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Chapter 1

Introduction

Light, microwaves, x-rays, and TV or radio transmission waves are all kinds of electro-

magnetic (EM) waves with different wavelengths. When they encounter objects, they

are scattered and absorbed, their propagations are deviated or attenuated. At the

same time, the scattered waves contain some information on the object, permitting to

measure or detect the properties of the object, such as the detection of objects with

radar, imaging of complex spray, measurement of raindrops, and many optical tech-

niques in the metrology of fluid mechanics and combustion, and in the environment

detection. Furthermore, when an object is illuminated by an electromagnetic wave,

it experiences a force and/or a torque, that maybe useful permits to manipulate the

object without direct contact leading to the development of optical tweezers which

play an important role in the life science. Therefore, the electromagnetic wave or

light scattering is of great interest in many fields and a large number of theories and

models have been developed, but new models are still necessary.

Research methods on electromagnetic wave interaction with particle can be divided

into two catalogs: experimental research and theoretical research. The prime method

of enquiry in science is the experiment. It may provide information of the “real

world” and check the theoretical research, but it is often limited by real conditions,

experimental costs, time-consuming costs and error-prone. The theoretical research

permits, on the other hand, revealing better understanding of the phenomena, finding

the law of nature and guiding the experimental research in the practical applications.

With the development of computer technology, the computational ability has been

improved dramatically in the last few decades and plays an increasing role in many

applications such as engineering and designing. As a result, numerical methods are

more and more omnipresent in the theoretical research. With the help of numerical

7



8 Chapter 1. Introduction

analysis, optimization of optical devices and improvements on optical technology and

theory can be done.

When electromagnetic waves interact with objects, the behaviors may be very dif-

ferent according to the wavelength. The researches on the scattering of EM waves by

objects are classified according to the wavelength. In the microwave domain (frequen-

cies between 300 MHz and 300 GHz), after decades of efforts, a great progress has

been recently achieved in solving the problems concerning complex objects (such as

aircraft, antenna arrays, ...). The calculable size of scatters of perfect conductor can

be of several hundreds of wavelengths. In the optical domain, the attention is more

concentrated to the particles of simple shape. Because the wavelength of light is much

shorter than the microwaves, the particles of some tens of micrometers are already

too large to be treated with numerical methods, while the rigorous methods can only

be applied to very simple shaped particles. The scientific and industrial communities

do not have any mean to predict accurately the scattering and absorption properties

of large complex shaped particles, whose size may reach up to a few tens of microns

and whose shape deviate from the canonical spherical and cylindrical shapes. For

example, in fluid mechanics, the characterization of a fuel injector of an automobile

engine, the study of the instability and the breakup of the liquid jets are essential

problems on the other way. A free jet is not circular cylindrical even in the most

stable case. Single cells, subcellular components and biological molecules trapped in

optical tweezers have irregular shapes too. The research on the interaction of light

and complex non-spherical particles is thus a challenge in the development of optical

metrology. Lack of means to deal with the scattering of large complex shaped par-

ticles severely limit possibility to understand, characterize and control many particle

systems of interest. In this PhD thesis, we intend to make a step forward towards the

computation of light scattering by large non-spherical particles.

The laboratory CORIA has developed in the recent year a novel ray model to pre-

dict the scattering of large irregular shape particle. It is very premising but needs to

be validated by other methods. The Center for electromagnetic simulation (CEMS) in

Beijing Institute of Technology has a rich experience in the electromagnetic computa-

tions. The multilevel fast multipole algorithm (MLFMA) they have developed is one

of the most powerful algorithms in the field. The aim of this PhD thesis is therefore

to join the competence of the two laboratories, on both approaches. The work of this

thesis consists of the implementation of these algorithms for large non-spherical par-

ticles, the comparison of the results, and the application of the developed tools to the
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prediction of force, torque and the stress exerted by a laser beam on such particles.

Theories and models of light scattering

Light is essentially a high frequency electromagnetic wave. Theoretically, all kinds of

phenomena concerning the linear interaction between light and the electromagnetic

waves can be solved by famous Maxwell’s equations together with the associated

boundary conditions. In practice, various theories and models have been developed

according to the properties of the waves and the scatters. They can be categorized

into three groups: rigorous theories, approximate methods and numerical methods.

Rigorous theories are based on the solution of Maxwell’s equations usually by

variable separation. The Lorenz-Mie theory (LMT) is one of the most famous theo-

ries. Originally, it was developed to describe the interaction between a homogeneous

isotropic sphere and an electromagnetic plane wave [1, 2]. Then it has been extend-

ed to the scattering of a plane wave by other simple shaped particles (infinite long

cylinder, spheroid, ellipsoid ...). However, these theories are limited to the plane

wave incident problem. In the 1980s’, the Lorenz-Mie theory was generalized to take

into account the shape of the incident wave [3, 4, 5]. To do so, one of the most

famous formalisms is the named Generalized Lorenz-Mie theory (GLMT), originally

developed for the scattering of a Gaussian beam by a homogeneous spherical parti-

cle [5, 6, 7, 8, 9]. In GLMT, two sets of beam shape coefficients are employed to

describe the incident beam. Various methods can be employed to evaluate beam

shaped coefficients including quadratures, finite series, localized approximations, and

the s-expansion method. Later, GLMT was extended to other simple shape particles:

multilayered spheres [10], ellipsoids [11, 12], infinitely long cylinders with circular

[13, 14] or elliptical cross-sections [15], sphere with one arbitrarily located spherical

inclusion [16], and aggregates [17]. But the calculable size of particles is often limited

to some tens of wavelengths except the sphere.

Approximate methods are not rigorous but flexible. Rayleigh theory applies to

particle sizes much smaller than the wavelength and the Rayleigh-Gans theory for

optically ”soft” (i.e. with a refractive index close to 1) particles [18]. High frequency

approximate methods, such as the geometrical optics (GO), the physical optics (PO),

the geometrical theory of diffraction (GTD) and the physical theory of diffraction

(PTD) can be used to deal with the scattering of very large (compared to the incident
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wavelength) and complex shape particles. Besides their powerful computational capa-

bilities for electrically large particles, another advantage of the latter methods is that

they can give physical explanation and help us to understand clearly the mechanism

of scattering. In the case of spherical particles or infinite circular cylinders, the GO

is proved to be able to predict very accurately the scattering diagram in almost all

directions. GO has been widely used for predicating light scattering by large par-

ticles. The research group of Yang has combined the GO with the electromagnetic

wave method to predict the total scattering properties such as the scattering matrix

[19, 20, 21]. But, GO is rarely applied to the scattering diagrams of a three dimen-

sional (3D) irregular shaped particle because of the difficulties in the determination

of reflection and refraction angles, in the calculation of local divergence/convergence

and the phase shift due to focal lines [22].

Alternatively, the scattering problem of any shaped particle can be dealt with nu-

merically by direct solution of Maxwell’s equations and these methods are termed as

numerical methods. These methods solve Maxwell’s equations numerically, without

any simplification. The T -matrix method (also called null field method or extended

boundary condition method (EBCM)) can yield highly accurate numerical solution

for the scattering of light by non-spherical particles, via regular vector spherical wave

functions (VSWF) and a transformation matrix (so called T -matrix). Under the E-

BCM, the T -matrix for general particles is given by a set of integrals of vector cross

products of vector spherical harmonics taken over the surface of the scatterer. It is

viewed as a semi-analytical method. This is because, on one hand, it can be treated as

an extension of the Lorenz-Mie theory, because it is also based on expansion of the in-

cident, transmitted and the scattered fields into a series of VSWF. On the other hand,

it can also, in some way, be considered as a surface discrete numerical method because

it calculates numerically integrals over the surface enclosing the volume involving on-

ly the tangential components of the fields on the surface. The T -matrix method was

developed by Waterman in a series of papers [23, 24]. It is popular in solving light

scattering by non-spherical axially symmetric particles. A T -matrix code for comput-

ing scattering by non-spherical and aggregated particles is presented by Mishchenko

et al. [25, 26]. The T -matrix technique usually relies on central expansions of the

electromagnetic field in VSWF. When the particle is spherical, this integral can be

evaluated analytically resulting in a diagonal matrix, whose elements are given by

the Mie coefficients. For non-spherically symmetric particles, the integration must be

numerically evaluated by quadrature [27]. To circumvent the the ill-condition prob-

lem in inverting the so-called Q-matrix, EBCM is combined with invariant imbedding
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method makeing it applicable to a large class of scattering problems [28, 29].

Besides the T -matrix method, other numerical methods are generally divided into

two groups by the form of Maxwell’s equations they solve: differential-equation and

integral-equation techniques. Differential equation methods compute the scattered

field by solving the vector wave equation in the frequency or in the time domain,

whereas integral equation methods are based on the integral counterparts of Maxwell’s

equations.

The finite-difference time-domain (FDTD) technique was introduced by Yee in

1966 [30]. It is a useful numerical method for modeling computational electromag-

netics by finding approximate solutions to the associated system of differential form

of Maxwell’s equations. Since it is a time-domain method, FDTD solutions can cov-

er a wide frequency range and treat nonlinear material properties in a natural way.

In FDTD, the two curl equations in Maxwell’s equations are converted into a set of

finite difference equations by discretizing time into finite steps and solution region

into rectangular grids. The FDTD method is a widely used and simple numerical

method for computational electromagnetic [31, 32, 33]. It has several advantages and

disadvantages. It is a versatile modeling technique that can manage any shaped par-

ticles. It also allows the user to specify the material proprieties at all points within

the computational domain. Furthermore, in FDTD, there is no need to solve a large

system of linear equations, and the memory storage requirement is proportional to

the total number of grid points. On the other hand, since the FDTD is a volume

discritized method, the number of unknowns increases quickly with increment of par-

ticle size parameter. The regular cubic mehs used by Yee is not flexible for models

with long, thin or shape features because of the excessively large computational do-

main. Since FDTD can only be applied for finite computational domain, the total

solution domain should be truncated with a virtual surface enclosing the particles

with absorbing boundary conditions (ABCs) or a perfectly matched layer (PML) to

minimize the effects of reflection. Usually, to promise the absorbing effect, the PML

or ABC will be placed at a distance from the particle [34, 35]. That makes the total

solution region larger than size of the particle. The finite spatial discretization and

approximate boundary conditions will affect the accuracy of the FDTD and makes it

poorly suitable for achieving high and controllable numerical accuracy.

The finite element method (FEM) is also a powerful full wave numerical method.

It uses variational methods to minimize an error function to produce a stable solution.

It is a volume discretized method, hence it can be used to deal with inhomogeneous,
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anisotropic particles but it requires large computer resources for large particles. Simi-

lar to the FDTD, it use ABC or PML to truncate the solution region hence its accuracy

highly depends on the boundary truncate accuracy. Its advantage is that it can use

tetrahedral elements to model the solution domain, hence it can achieve good geome-

try modeling accuracy for particles with corners or edges. The FEM will form a sparse

matrix equation system, which is usually hard to solve iteratively because of its bad

conditioning number. This sparse matrix can be solved with fast sparse solver such

as multifrontal approach more efficiently [36]. Moreover, the domain decomposition

method can greatly enhance its capability especially for periodical structures such as

antenna arrays [37, 38]. FEM has been widely used to solve thermal, electromagnetic,

fluid, and structural problems.

Both FEM and FDTD are differential equation methods and an additional im-

plementation of approximate boundary conditions is necessary because of the finite

spatial discretization. On the contrary, the integral equation (IE) methods automat-

ically satisfy the radiation boundary condition. They are efficient and provide good

flexibility and accuracy for open region problems such as radiation and scattering. In

the integral equation methods, the original boundary value problems for Maxwell’s

equations are reformulated as integral equations over the boundary interfaces or over

the entire volume, hence they can be termed as volume integral equations (VIEs) or

surface integral equations (SIEs). The integral equations can be converted from field

theory to mathematical equations by using techniques such as the method of moments

(MoM) [39] or other modifications of MoM such as the discrete dipole approximation

(DDA) [40].

In optical domain, the DDA is more widely used than the MoM implementation of

VIEs for scattering problems. In DDA, the particle is modeled as a lattice of dipolar

point scatterers (dipoles). The scattered fields of the dipole interact with each other,

and with the external field. The approximation of these interactions is based on the

integral equation for the electric field. So the DDA is also referred to as the coupled

dipole approximation. Initially the DDA was proposed by Purcell and Pennypacker

replacing the scatterer by a set of point dipoles [40]. Later, developments and im-

provements on DDA have been done [41, 42, 43, 44]. Now, a C implementation of the

DDA named ADDA [44] and a Fortran code developed by B. T. Draine et al. called

DDScat [42] are available on website. Although the final equations are essentially the

same, derivations based on the integral equations give more mathematical insight into

the approximation, while the model of point dipoles is physically clearer. Since in
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DDA, the whole volume of the particles is discretized into small cubical subvolumes,

the optical properties (refractive index) of each dipole can be set independently, it has

the ability to naturally simulate the scattering of any arbitrarily shaped and/or inho-

mogeneous scatterer. DDA can also be accelerated by using the fast fourier transform

(FFT) for matrix-vector multiplication [45]. However, in DDA, the computation re-

sources increase quickly and size of the particles is severely limited, especially for high

refractive index particles [44]. Cubical subvolume meshes also make it not flexible

and efficient for those complex shaped particles with sharp corners or wedges.

MoM implementation of surface integral equations (SIEs) is widely used for com-

puting electromagnetic scattering by homogenous objects, such as design of dielec-

tric components on satellite, cockpit cover of aircraft, and optical crystal devices

[46, 47, 48]. By using the equivalence principle, four different integral equations,

namely the tangential electric-field integral equation (T-EFIE), the normal electric-

field integral equation (N-EFIE), the tangential magnetic-field integral equation (T-

MFIE), and the normal magnetic-field integral equation (N-MFIE) can be derived

for both inner and outer region by considering the boundary conditions for the elec-

tric and magnetic fields separately [49]. In the past few years, various formulations

have been derived by using different combinations of the boundary conditions, testing

schemes, and scaling operations [49, 46, 50, 51, 47]. These formulations are general-

ly constructed from tangential (T) or normal (N) equations or a combination form

of them. SIE formulations will result in a large-scale matrix equation system which

can be solved with iterative solvers such as the generalized minimal residual method

(GMRES). Because of the full MoM matrices, the size of the object is servery lim-

ited. Matrix-vector multiplications are performed with various acceleration methods

[52, 53, 54]. Among these acceleration methods, the MLFMA has been well developed

and can be used to solve challenging problems [55, 56, 57]. By employing MLFMA

to speed up matrix-vector multiplication in the iterative solution of the final matrix

equation system, both the time and the memory complexity can be reduced.

In the view of meshes used to model geometry of the particle, DDA, FEM and

FDTD are volume discretized methods. Their number of unknowns is related to the

volume of the particle(O(x3) with x = 2πa/λ). Mesh density (size of dipolars for DDA,

Yee cells for FDTD and average edge length of tetrahedral elements for FEM) in these

volume discretized methods is usually about 1/(10|m|) to 1/(20|m|) with m being the

refractive index of the scatterer. They are flexible and robust for inhomogeneous,

anisotropic particles but the computation resource need increases rapidly with the



14 Chapter 1. Introduction

particle size, limiting this approach to the scattering of small particles. In the MoM

implementation of SIEs, triangles patches are used, which limits the discretization of

the unknowns to the surface of the particle and it can be termed as a surface discrete

method. Compared with the volume discrete methods, such as the DDA, the FEM or

the FDTD, SIE method is more flexible and efficient for large homogenous particles,

especially for particles with large refractive index. Furthermore, discrete with triangles

makes it easier to generate meshes for modeling irregular shape particles. Compared

with T -matrix method, the SIE is also more general because it dose not need any

expansion of the field into a series of VSWF. The SIE can be programmed in the

manner independently of the geometry of the particle, hence it can be applied to

arbitrary shaped particles, without any change, and can also be easily applied to

other shaped beams.

As mentioned before, there are few means to deal with light scattering of large

non-spherical particle, even if the particle itself is homogeneous. The goal of this

thesis is consequently to try to make a step forward in computation of light scattering

by large non-spherical homogeneous particles with the MLFMA enhanced combined

tangential formulation (CTF) of the surface integral equations (SIEs). To further

strength its capability for large particles, a hybrid message passing interface (MPI)

and open multi-processing (OpenMP) parallelization of MLFMA on a memory dis-

tributed computer system is done. In practice, the MLFMA-tree is first partitioned

among processes to construct MPI parallelization. Tasks on each process are further

accelerated by OpenMP multi-threading parallelization [58]. The hybrid paralleliza-

tion is of high efficiency and compatible with configuration of mainstream distributed

memory high performance computer platforms and make this algorithm capable to

deal with arbitrary shape particles of size parameter larger than 600.

On the other hand, approximate methods, thought not exact, can deal with the

scattering of large non-spherical particle. Among them, the geometrical optics, or

ray model is the only candidate to treat the total problem of the scattering, i.e. the

scattering in all direction, calculation of the cross-sections, the radiation pressure

force, torque and stress. Some authors have contributed to the application of the GO

to the prediction of the radiation pressure force [59]. Yang et al. have extended the GO

to the calculation of the scattering matrix of non-spherical particle by combination to

the integral method [19]. The main difficulty to apply the ray model in the scattering

of an irregular shape particle is the evaluation the divergence/convergence of the

wave on the curved surface of the particle. To cross this barrier, Ren et al. [22] have
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developed the Vectorial Complex Ray Model (VCRM). A new intrinsic property of the

rays – the curvature of wave front is introduced in the model. With this new property

and by using vectors for ray tracing, this method is more accurate and flexible than the

classical GO. The accuracy of VCRM has been investigated by comparing results with

LMT for spherical particles and circular infinite cylinders. It has been successfully

applied to the calculation of scattering by ellipsoidal particles and infinite elliptical

cylinders. Various new physical phenomenons in light scattering by non-spherical

particles have been revealed. It is proved to be applicable for any form of incident

wave, any shape of object with smooth surface, and to predict with sufficient precision

all scattering properties of the object. However, because it is essentially based on the

approximate method of ray tracing, its validity is to be validated and its precision is

to be evaluated. Hence, one of the main tasks of the thesis is to compare the results

obtained by new developed algorithm of MLFMA with VCRM.

Numerical simulations of radiation pressure force

and torque

Interaction between the light and a particle let the particle experience the radiation

pressure force (RPF), torque and stress. This mechanical effect may push or pull

the particle, and in certain conditions make it rotate or be deformed. The radiation

pressure force and the torque are the overall net force and torque on a particle. The

surface stress is a local mechanical effect due to the nonuniformity of the electromag-

netic wave radiation on the particle.

RPF can be used to manipulate small particles without contact with the targets,

which is especially useful in many applications. The requirement of very high inten-

sity (gradient) makes RPF usable only with laser light sources. Such activities was

initiated by Ashkin in 1970 [60]. In this work, a loosely focused laser beam was used

to guide particles. Then the acceleration of microscopic particles by the radiation

force was observed, pulling transparent particles with an index of refraction higher

than the surroundings towards the beam axis. Later, other stable optical traps were

demonstrated, including the optical levitation trap. In 1986, a foundational work was

done by Ashkin and co-workers in the field of optical micromanipulation [61]. In their

work, a particle was confined by a single tightly focused laser beam through a high

numerical aperture lens. In such way, one can establish gradient forces on a particle

counteracting the scattering forces in propagation direction. This simple but elegant
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implementation of an optical trap enables the stable, three-dimensional optical trap-

ping of dielectric particles and makes this manner widely used in nowadays as named

optical tweezers.

Since the introduction of optical tweezers in 1986, it has become an important

tool for research in the fields of biology, physical chemistry and soft condensed matter

physics and greatly accelerate researches in these domains. A dual beam trapping can

form a optical stretcher which is capable of trapping and stretching soft dielectric-

s, such as living biological cells [62, 63]. A parametric survey of various geometric,

loading and structural factors has been done to develop quantitative models for the

mechanics of deformation with the help of optical tweezers to study mechanical de-

formation of living cells under different stress states and the progression of some

diseases [64]. Optical traps have been applied in the study of molecular motors and

the physical properties of DNA [65]. Optical tweezers can be used to the confinement

and organization of dielectric particles and to form an optical sorter for microscopic

particles [66]. Also, it is believed that extended manipulation techniques will find

application in microfluidic devices such as actuators, pumps, and valves [67] as well as

possible application in micromachining tools [68, 69]. Like optical force, the optical

torque can make rotation of an element without mechanical contact, so the device can

be rotated while in a sealed environment [69].

As one of the most effective methods for manipulating micron and sub-micron

sized particles, optical tweezers has widely been studied by scientists through both

theoretical and experimental research. In the past few decades, work on numerical

simulations also achieves good harvest and provides supports for experimental work.

The generalized Lorenz-Mie Theory (GLMT) is developed in 1980’s by Gouesbet

et al. [5] for the scattering of a a Gaussian beam by a homogeneous sphere. Ren et al.

[70, 71] has applied it to the prediction of RPF exerted on a sphere. RPF exerted on

arbitrarily located particles in Gaussian beam as well as associated resonance effects

is studied [70]. Later, an improved standard beam description is presented by Polaert

et al. [72]. They have calculated the RPF on a multilayered spherical particle by

a focused Gaussian beam [73]. Lock studies on-axis and off-axis RPFs exerted by

a tightly focused laser beam [8, 9]. However, trapping and manipulation of non-

spherical particles is both very different and much less mastered than that of spheres.

The case of a cylinder of circular cross section is reported [74]. Theoretical prediction

of RPF exerted on a spheroid by an arbitrarily shaped beam is discussed by Xu et al.

[12]. Recently, Xu et al. [75] provide an analytical solution to the radiation torque
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exerted by an arbitrarily shaped beam on a spheroid. Nonetheless, much less work

on the RPF and torque prediction for irregular particles has been reported. This is

because the rigorous solutions of Maxwell equations exist only for the particles whose

shape corresponds to a type of coordinates system. On the other hand, even for the

regular shaped particle as spheroid or ellipsoid, the numerical evaluation of the special

function is still another obstacle.

Approximate methods, such as ray optics, although not accurate enough, can

provide acceptable approximation in the analysis of experimentally measured values

[76, 77, 78]. Chang et al. [77] calculate the optical force on a ellipsoidal particle

subjected to a loosely focused laser beam with the dynamic ray tracing method and

find the ellipsoids levitated along the direction of the laser beam propagation will

move horizontally with rotation. In [78], a 2-dimensional ray optics model is used to

give explanations of the observed tumbling motion.

The T -matrix method is also used in the computation of RPF and torque. In this

method, one needs first to calculate T -matrix, and then find VSWF representation

of beam at the desired position within the trap for the desired orientation. Then the

scattered fields are expressed in terms of VSWFs and the RPF and torque are finally

computed by integrating the field around the particle. The most notable work in this

domain has been presented by Nieminen et al. [79, 80, 81]. In [79], they calculated the

axial force acting on particles of different shapes (spheroid and cylinder) and of volume

equal to a sphere of radius 0.75µm. The beam shape coefficients were calculated by

the localized approximation. Later the work of Simpson et al. concerns T -matrix

method for more complicated interactions associated with holographic assembly and

present a general and flexible method, based on T -matrix method [82, 83, 84]. In

[82], they investigated the optical interactions between pairs of particles in a single

trap and in two separate traps, and proved that the T -matrix method is very versatile

and it is expected to be valuable in studies of holographic nanoassembly. Simpson et

al. have performed numerical studies on spheroids [83]. They found an interesting

phenomenon: in a laser beam the prolate spheroids generally align with the symmetry

axis parallel to the beam while the oblate spheroids always assume a perpendicular

orientation. The long axis of the particle will align with the polarization direction.

The rotation of absorbing spheres in Laguerre-Gaussian beams is also studied by using

a large-sphere approximation for particle size parameter until 40 [84]. The T -matrix

method is further extended to binary clusters composed of two identical, mutually

contacting spheres of latex [85] (less than1 µm). In principle, the T -matrix method
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can be used easily to predict the RPF of arbitrary shaped particles with any size

parameters. However, so far as we know, there are few or none reports on particles

of size more than ten microns or, in other words, of size parameter larger than 100.

Moreover, this technique usually relies on central expansions of the electromagnetic

field in VSWF. Arbitrary shaped particles of low rotational symmetry will increase

time required to evaluate the T -matrix.

Because of its strong flexibility, DDA has also been used in computing RPF and

torque. Draine calculated the radiation pressure force on a particle by a plane wave

with DDA in 1988 [86]. In this paper, the radiation pressure cross section is computed

for fluffy aggregates by computing the asymmetry parameter and the cross sections

for extinction and scattering. Later, Draine and Weingartner present a series of work

on radiation torque [87, 88, 89]. They are interested in radiation torque on irregular

dust grains while at the same time, Kimura and Mann have also done notable work

on computing RPF with DDA [90]. In all these researches, the total radiation force

is numerically evaluated by an integral over the total space angle. Hoekstra et al.

calculate the radiation forces on each dipole in the DDA model and then obtain the

total radiation pressure on the particle by summation of the individual forces [91].

All of the above DDA based work for RPF and torque is for plane wave incidence and

the particles are relatively small (less than ten micrometers).

In the last decade, work on the prediction of the RPF and torque by DDA on larger

arbitrary shaped particles with shaped beams has been reported [92, 93, 94, 95, 96].

Bonessi et al. use DDA to obtain internal fields, and finally integrate the force densities

given in equation over the volume of the particle [92]. The axial trapping forces

are calculated for spheres and cubes and results have been then compared with the

benchmarks. Chaumet et al. [93] have shown that the radiative reaction term must be

taken into account to express the optical torque on a dipolar subunit. In their paper,

they also compute optical torque on a micro-propeller illuminated by a right-handed

circularly polarized wave. Simpson et al. present results of DDA calculations of the

optical forces and torques experienced by a dielectric cylinder trapped horizontally

in more than two Gaussian beams [94]. The rod emerged in water (m = 1.33) was

5µm in length, with a radius of 0.2µm and a refractive index of m = 1.4663. They

have also evaluated the stiffness and strength of RPF as a function of the refractive

index and radii of a dielectric cylinders held horizontally between pairs of Gaussian

beams [95]. They pointed out that, these characteristic parameters are influenced in

a similar way as spheres by optical resonances and by the relative dimensions of the
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trapped particle and incident beam. Their results show that a rod can be trapped

when the electric field is polarized perpendicular, but not parallel to their axes. Their

latest work concern the optical forces and torques calculated by DDA and T -matrix

method for lower symmetry particles and demonstrate excellent agreement [96]. These

particles include dielectric spheres, geometrically and optically anisotropic particles,

and also inhomogeneous core-shell particles.

Compared with scattering problems, much less work has been reported on the

numerical computation of RPF and torque by using FDTD. When FDTD is used for

computing RPF or torque by a shaped beam, Lorentz law of force or time average of

the Poynting vector for the object under analysis instead of Maxwell’s stress tensor is

used [97, 98, 99, 100, 101]. Mansuripur et al. [99] analyzed the radiation pressure on

a dielectric prism. They found that when the surrounding medium is a transparent

liquid, the force of radiation on the body of the liquid should be included to achieve

consistency with momentum based calculations. Gauthier computes the radiation

pressure force on various dielectric objects including a dielectric thick walled shell by

using the 2-D FDTD computation technique [100]. The RPF is obtained by computing

the energy flow at the boundary of the FDTD grid domain with and without the

trap object present. Liu et al. demonstrated a single tapered fiber optical tweezers

system, and they calculated also both the axial and transverse trapping forces by

using FDTD method [101]. Similarly to FDTD, although the FEM is powerful and

has great capability for computing radiation or scattering, still much less work has

been reported in computing RPF and torque. The only work we find is that by White

[102].

We can conclude that in the literature the prediction of the RPF and torque is

focused on two kinds of particles: spheres and particles of very small size. Because of

the limitation of computational capability, less knowledge is known about possibilities

to effectively trap larger particles with irregular shapes, neither experimentally nor

theoretically. However, irregular shape particles such as nanotubes and nanorods are

widely applied in biophysics, microfluidics, microelectronics and photonics [69, 103,

104]. Trapping of non-spherical particles is both very different and much less mastered

than that of spheres [105]. Experimental researches on non-spherical particles find

interesting phenomena greatly different from spherical particles. Cheng et al. find that

disks stably trapped in bulk water will oscillate [106]. Neves et al. have shown that

nano-fibres will switch to a strongly oblique orientation when it is brought in contact

to the cover slip of the sample chamber [103]. Mihiretie et al. observed ellipsoids of
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aspect ratio k < 3 trapped similarly to simple spheres, but for elongated particles

with k > 3 it will not keep immobile but tumble [78]. Little formal interpretation is

provided to explain these phenomenons. Theoretically study with the help of exact

numerical simulation for 3D particles is perhaps a good way to help us achieving

better understanding on radiation pressure force. Hence besides the study on light

scattering by the MLFMA, the radiation pressure and torque on large non-spherical

particles as well as the surface stress will be numerical analyzed in this thesis.

Structure of the dissertation

The remainder of the dissertation is organized as follows. Chapter 2 is devoted to the

numerical computation and comparison of the scattering properties of large elliptical

particles by using both the MLFMA and the VCRM. After a brief description of the

two methods, the procedure on the hybrid MPI and OpenMP parallelized MLFMA is

given. The numerical results for ellipsoidal particle of different aspect ratios obtained

by VCRM and MLFMA are then compared. A series of numerical experiments are

performed on Chebychev particles to show the performance of our algorithm. In

Chapter 3, the SIE with MLFMA is applied to compute RPF and torque exerted by

a shaped beam on homogenous particles of different shape. In MLFMA, the RPF

is computed by vector flux of the Maxwell’s stress tensor and the radiation torque

is computed with the vector flux of the pseudotensor over a spherical surface tightly

enclosing the particle separately. Thus, the analytical expressions for electromagnetic

fields of incident beam in near region are used. Chapter 4 presents the study of the

surface stress on soft homogeneous non-particles. Stress profiles on spheroids with

different aspect ratios are computed. Physical analysis on mechanism of optical stress

is given with help of VCRM. Computational study of stress on surface of a biconcave

cell-like particle, which is a typical application in life science, is also undertaken. The

last Chapter is dedicated to the conclusions and perspectives of the dissertation.
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Scattering diagrams calculated by
VCRM and MLFMA

In various research fields, we need to simulate the scattering of light by particles

with complex shapes, such as in multiphase flow, atmospheric radiative transfer, bio-

optics and climate study. In fact, particles encountered in nature, in industry and in

laboratories (spray of atomization, ice crystals, dust aerosols, raindrops and cells in

biophysical systems) are often irregularly shaped and having a wide range of sizes.

As already discussed in Chapter 1, existing rigorous methods such as the LMT and

GLMT are able to predict the scattering properties for particles of simple shapes.

However, when the shape of the particles is more complex, numerical methods must

be used. If the size parameter of irregular shape particles is much larger than the

incident wavelength, approximate methods such as GO can be applied.

In principle, the geometrical optics can be applied to deal with the interaction be-

tween light and objects of any shapes. But in reality, it is rarely used in quantitative

study of particle scattering by non-spherical, non-circular cylindrical particles. Many

researchers have contributed to the improvement of geometrical optics in different an-

gles, some take into account special effects, others combine it with the electromagnetic

wave method to predict the total scattering properties such as the scattering matrix

[107, 108, 109, 110, 111]. But, few researchers have examined the scattering diagrams

for non-spherical particles. However, the scattering diagrams are important in both

theoretical and practical points of view since they reveal the physical mechanism of

scattering and the typical information in certain angles (rainbow and critical angles

for example) are of particular interest in applications such as the optical metrology in

multiphase flow. For instance Hovenac et al. have examined the scattering diagrams

21
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of a sphere around rainbow angles by GO, Airy theory, Debye series and have discussed

also the contribution of the surface waves [107]. By comparison with the Lorenz-Mie

theory, Xu et al. have shown that by takeing into account the interference and d-

iffraction effect in forward direction, GO can correctly predict the scattering diagram

of a sphere in all direction [112, 113].

But the approach used by Hovenac et al. [107] and Xu et al. [112] can only be

applied to a homogeneous sphere and an infinite circular cylinder. Lock has studied

the scattering of a spheroid by ray model [114, 115]. He has shown that it is possible

to obtain analytical equations to describe the ray properties but the numerical cal-

culation is limited only to the reflection and the first refraction rays (p = 1) because

of the difficulty in the solution of the equations. Later, Yuan attempted to solve this

problem numerically but did not succeeded even in the simplest case: scattering in

the symmetrical plane of an elliptical particle illuminated by a plane wave [116].

The key problem is the divergence/convergence of a wave on the surface of the

particle. To overcome these difficulties, Ren et al. have introduced a new wave

property – wave front curvature and developed a new model: the VCRM [22, 117].

The wave front curvature considers the wavelike behaving of light, the convergence

or divergence of the wave. Thus, a ray is described not only by its amplitude, phase,

polarization, propagation direction, but also by the curvatures of the local wave front

of the wave that the ray presents. All these features evolve at each interaction of

ray with the particle surface. Particularly, the curvature matrix of the emergent wave

after each interaction of the ray with the particle surface is calculated according to the

curvature matrix of the incident wave and the local curvature of the particle surface

by using the wave front equation. The significant benefits of this approach are: the

wave properties are integrated in the ray model; the divergence/convergence of the

wave is deduced by the wave front curvature; the phase shift due to the focal lines is

determined directly by the curvature of the wave front. Hence it can be used to obtain

a quite accurate scattering diagram in all directions and the scattering properties of

an object of any shape with smooth surface illuminated by an arbitrarily shaped

beam. This model has already been applied successfully for computing scattering of

large ellipsoids and infinite long elliptical cylinders with the plane wave or shaped

beam incidences [22, 117, 118]. However, the results of VCRM are to be validated

because neither theoretical nor numerical methods exist to predict with precision the

scattering properties of so large non-spherical particles.

Full wave numerical methods, although time consuming and needing large amounts
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of CPU memory, are very flexible in term of the particle shape. With the development

of super computer technology, the CPU memory capacity becomes larger and larger,

the computation speed becomes faster and faster. So the calculable size of the particle

can be solved with full wave numerical method increase, from about one wavelength to

tens of wavelengths. With the help of parallelization technique, this size limit can be

further increased to hundreds of wavelengths. Among various numerical methods, SIE

method is especially suitable for large homogeneous particles. By using the MLFMA

to speed up matrix-vector multiplication in the iterative solution of the final SIE

matrix equation system, CPU time and memory resources need can be greatly reduced.

The code MLFMA I develped with hybrid MPI and OpenMP parallelization can be

applied to very large particles with size parameter bigger than 600.

In this chapter, after the description of the general principle of VCRM and MLF-

MA for light scattering problems, the comparison between the diagrams calculated

by MLFMA and VCRM for elliptical particles is given and discussed. At the end,

some scattering diagrams computed for large Chebychev particles are provided to

demonstrate the capability and flexibility of our algorithm.

2.1 Vectorial Complex Ray Model

In the Vectorial Complex Ray Model (VCRM), all waves are described by bundles of

vectorial complex rays having five properties. Besides the direction, the amplitude,

the polarization and the phase, the wavefront curvature of the wave is introduced.

Furthermore, the wave vector k is used to describe the direction of a vectorial complex

ray which simplifies considerably the calculation.

According to the continuity of the tangent component of the wave vector on the

interface of the particle, Snell’s law can be written as

k′τ = kτ (2.1)

where k′τ and kτ are respectively the tangent components of the wave vectors k and

k′ of the rays before and after interaction (reflection or refraction). Then the normal

component of the emergent ray is given by

k′n =
√
k′2 − k2τ (2.2)

We assume the curvature of the particle surface in the vicinity of the incident point of a

ray to be described by matrix C; the curvatures of the incident and refracted/reflected
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wave fronts are expressed, respectively, by the matrices Q and Q′(see Fig. 2.1). The

 

Figure 2.1: Schematic of the interaction of the wavefront and surface.

projection matrix between the base unitary vectors (t1, t2) of the coordinates systems

on the planes tangent to the wavefront and to the dioptric surface(s1, s2) is Θ:

Θ =

(
s1 · t1 s1 · t2
s2 · t1 s2 · t2

)
(2.3)

Then the relation between these three curvature matrices is given by the following

wavefront matrix equation [22]

(k′ − k) · nC = k′Θ′TQ′Θ′ − kΘT QΘ (2.4)

where n is the normal of the dioptric surface (i.e., the particle surface), the superscript

T represents the transposition operator, the letters with or without the prime represent

respectively the values after or before interaction of the ray with the surface. If

we are interested in 2D problems, in which the scattering in the plane defined by

the symmetric axis of the particle and the direction of the incident plane wave, the

curvature matrices described in the two main directions are diagonal:

C =

( 1
ρ1

0

0 1
ρ2

)
(2.5)

Q =

( 1
R1

0

0 1
R2

)
(2.6)

Q′ =

(
1
R′

1
0

0 1
R′

2

)
(2.7)

where ρ1 and ρ2 are the two principal curvature radii of the particle surface at the

incident point. R1 and R2 the principal curvature radii of the wavefront before in-

teraction, and R′
1, R

′
2 those of the wavefront after interaction. They satisfy the two
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simplified scalar wave front equations:

k′ cos2 θr
R′

1

=
k cos2 θi
R1

+
k′ cos θr − k cos θi

ρ1
(2.8)

k′

R′
2

=
k

R2

+
k′ cos θr − k cos θi

ρ2
(2.9)

where θi and θr are respectively the incident and refraction angles. In VCRM the

divergence factor D is introduced to describe the divergence/convergence of the wave

and it is determined directly by the curvature radii of wavefronts as follows

D =
R′

11R
′
21

R12R22

· R
′
12R

′
22

R13R23

· · ·
R′

1pR
′
2p

(r +R′
1p)(r +R′

2p)
(2.10)

where r is the distance between the origin of the coordinate system and the observation

point. The index p is the order of the ray. R1j and R2j (j = 1, 2, · · · , p) represent the
two curvature radii of the wavefront of incident ray at jth interaction with the surface.

R′
1j and R

′
2j are the corresponding curvature radii of the refracted ray.

To take into account the effect of interference, generally, the phase of each ray

must be computed which is composed of four parts:

Φ = Φinc + Φpth + ΦFrs + Φfcl (2.11)

1. The phase Φinc of the incident wave is calculated directly according to the wave

front of the incident wave expression.

2. The phase Φpth due to the optical path is calculated according to the optical

path in and out the particle relative to the reference ray passing by the center

of the particle.

3. The phase due to the reflection or refraction ΦFrs is included in the Fresnel

coefficients which are calculated with the normal components of the wave vectors

of the incident wave kn and the refracted wave k′n (k′n = −kn for reflected wave).

r1 =
kn − k′n
kn + k′n

(2.12)

r2 =
m2kn − k′n
m2kn + k′n

(2.13)

t1 =
2kn

kn + k′n
(2.14)

t2 =
2mkn

m2kn + k′n
(2.15)
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where rX and tX stand for the reflection and refraction ratios, and X = 1, 2 for

perpendicular and parallel polarizations.

4. The phase shift due to the focal lines Φfcl. Each time a ray passes a focal line,

the phase advances π/2. To do so, it is only necessary to count the number of

sign change of the curvature radii between two successive interactions.

The complex amplitude of a ray is calculated by the product of three terms, the

Fresnel coefficients, the divergence factor and the absorption factor, with

SX,p =
√
Dp |SG| εX,pApe

iΦ (2.16)

where SG the amplitude of the incident wave, Ap is the absorption factor, which can

be evaluated by the attenuation factor as function of the distance of the ray in the

particle [119] according to

Ap = exp

(
−mi

p∑
q=1

k′n,qdq

)
(2.17)

where mi is the imaginary part of the refractive index. dq denotes the distance that

the ray crosses in the particle. k′n,q is the component of the wave vector normal to the

particle surface. The total amplitude of the scattering field at a given angle is just

the summation of all rays.

In this chapter we are interested in a relative simple case: scattering of a plane

wave by a homogeneous ellipsoidal particle. The incident direction is in a symmetrical

plane of the particle so that all the rays remain in the same plane.

An ellipsoidal particle is described by

x2

a2
+
y2

b2
+
z2

c2
= 1 (2.18)

where a, b and c are respectively the semi-axes of ellipsoid in x, y and z directions

(Fig. 2.2. The scattering diagrams are observed in the plane y = 0. The two curvature

radii in the two principal directions are given by

ρ1 =
c2

a

[
1 +

(
a2/c2 − 1

)
z2/c2

]3/2
(2.19)

ρ2 =
b2

a

[
1 +

(
a2/c2 − 1

)
z2/c2

]1/2
(2.20)

according to the coordinate z of the impact point of the ray.
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Figure 2.2: Geometry of a triaxial ellipsoid.

In summary, Eqs. (2.1), (2.2) and (2.18) permit to determine the interaction points

of rays and their directions. The divergence/convergence of the wave is calculated

according to Eqs. (2.4), (2.19), (2.20), (2.8), (2.9) and (2.10), and the amplitude

of the rays are deduced from Eqs. (2.12)-(2.15), (2.16) and (2.17). Then the final

amplitude in a given direction is calculated by summing all the complex rays arriving

in that direction.

2.2 Combined tangential formulation with MLF-

MA

The surface integral equation (SIE) approach is often preferred for homogeneous ob-

jects because it limits the discretization of the unknowns to the surface of the object

and the discontinuous interfaces between different materials [49]. In this section, we

give a brief description of the SIE method for homogeneous dielectric objects. For a

dielectric object, using either the equivalence principle or the vector Green’s theorem,

we can formulate a set of integral equations to calculate the electric and magnet-

ic fields (E,H) in terms of equivalent electric and magnetic currents (J,M). The

boundary S of the dielectric object is taken as the equivalent surface, as shown in

Fig. 1, with the incident beam denoted as (Ei,Hi) and the equivalent sources as

(J,M). Four basic integral equations are expressed in the homogeneous medium: the

electric field integral equation outside the dielectric body (EFIE-O), the magnetic

field integral equation outside the dielectric body (MFIE-O), the electric field integral

equation inside the dielectric body (EFIE-I), and the magnetic field integral equation
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inside the dielectric body (MFIE-I) [49]:
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Figure 2.3: Sketch of three dimensional homogeneous dielectric object.

EFIE-O: E1 − Z1L1(J) +K1(M) = Ei (2.21)

MFIE-O: H1 − Z−1
1 L1(M)−K1(J) = Hi (2.22)

EFIE-I: E2 − Z2L2(J) +K2(M) = 0 (2.23)

MFIE-I: H2 − Z−1
2 L2(M)−K2(J) = 0 (2.24)

where Zl = (µl/εl)
1/2 denotes the wave impedances in medium l with l = 1, 2 respec-

tively for medium outside and inside object. The operators Ll and Kl are defined

as:

Ll{X}(r) = jkl

∫
S

[X(r′) +
1

k2l
∇(∇′ ·X(r′))]Gl(r, r

′)dr′ (2.25)

Kl{X}(r) =
∫
S

X(r′)×∇′Gl(r, r
′)dr′ (2.26)

where j =
√
−1, kl = ω(µl/ϵl)

1/2, X is either the equivalent electric current J or the

equivalent magnetic current M on the surface of the object, and

G(r, r′) =
exp (−jkl|r− r′|)

4π|r− r′|
(2.27)

In order to overcome the resonance problem, the combined field integral equation

is used. We can combine the electric field integral equation with the magnetic field

integral equation, or the internal integral equation with the external integral equation.

Various forms of combined field integral equations can be constructed, such as the
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Poggio-Miller-Chang-Harrington-Wu-Tsai(PMCHW) equations [120], the Combined

tangential formulation(CTF), the combined normal formulation(CNF) and the electric

and magnetic current combined-field integral equations(JMCFIE) [121]. Among those

forms of combined equations, the nature of CTF equations is close to a first-kind

integral equation and its accuracy is the best, especially when dealing with objects

with sharp edges, corners or high dielectric constant. The equation form of CTF can

be expressed as follow:{
Z−1

1 t̂ · (EFIE-O) + Z−1
2 t̂ · (EFIE-I)

Z1t̂ · (MFIE-O) + Z2t̂ · (MFIE-I)
(2.28)

where t̂ is the tangential vector at a point on the surface. Eq. (2.28) can be discretized

by first expanding (J,M) as:

J =
Ns∑
i=1

giJi M =
Ns∑
i=1

giMi (2.29)

where Ns denotes the total number of edges on S and gi denotes the Rao, Wilton

and Glisson(RWG) vector basis functions [51]. In implementation, the surface of the

particle is modeled by using small triangular patches, such work can be done with the

help of commercial software. The RWG basis functions are associated with the edges

of the triangular patches. By substituting Eq. (2.29) into Eq. (2.28) and applying gi

as the trial functions for the tangential field equations, a complete matrix equation

system can be obtained. This numerical solution process is well known as the method

of moment (MoM). By solving this matrix equation with iterative solvers, such as the

generalized minimal residual method (GMRES), the equivalent sources (J,M) on the

surface S can be known. Such procedure is well known as the method of moments

(MoM). [
Z11 Z12

Z21 Z22

] [
J
M

]
=

[
f1
f2

]
(2.30)

with

Z11 [m,n] = Z22 [m,n] =

∫
S

gm · L1 (gn) dr+

∫
S

gm · L2 (gn) dr (2.31)

Z12 [m,n] = − (1/Z1)

∫
S

gm ·K1 (gn) dr− (1/Z2)

∫
S

gm ·K2 (gn) dr (2.32)
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Z21 [m,n] = Z1

∫
S

gm ·K1 (gn) dr+ Z2

∫
S

gm ·K2 (gn) dr (2.33)

f1 [m] = − (1/Z1)

∫
S

gm · Ei (r) dr (2.34)

f2 [m] = − (1/Z1)

∫
S

gm ·Hi (r) dr (2.35)

When the surface integral equations are used to analyze a dielectric object, the

triangle meshes used to discrete the surface S must be dense if the dielectric con-

stant of the medium is big. Moreover, the number of unknowns is double compared

to the metal since both the equivalent electric and magnetic currents exist on the

surface. Therefore MoM is conventionally limited to dealing with electrically small

dielectric objects due to the computational and storage complexity of O(N2), with N

the number of unknowns. To circumvent this problem, matrix-vector multiplications

are performed with various acceleration methods, such as FFT, AIM and MLFMA

[52, 122, 53]. Among these acceleration methods, the MLFMA has been well develope-

d and can be used to solve challenging problems. Hence, the multilevel fast multipole

algorithm (MLFMA) is employed here to speed up matrix-vector multiplication and

reduce the memory requirements. By using the MLFMA, both the time and memory

complexity can be reduced to O(NlogN) [123, 49, 52]. We describe briefly in the

following how to use MLFMA in CTF formulation. More details can be found in

[49, 52].

In MLFMA, interactions between the basis and testing elements can be divided

into two types: near interactions and far interactions. For near interactions, they are

computed directly in the same way as those in MoM and stored as a sparse matrix.

However, for far interactions, we first construct a tree structure of levels by placing

the scatterer in a cubic box and recursively dividing the computational domain into

sub-boxes. Then MLFMA calculates the interactions between the basis and testing

elements, which are far from each other, in a group-by-group manner consisting of

three stages called aggregation, translation, and disaggregation [49]. It can be known

from Eq. (2.28), because both the operators L and K are involved in the matrix

equation of CTF, we need to solve only two types of multiplication which can be
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expressed in terms of the multipole expansion as follows [49]:

⟨gi,Ll(gj)⟩ = k2l (4π)
−2

∮
V1lTl(k̂ · r̂mm′)V′

ld
2k̂ (2.36)

⟨gi,Kl(gj)⟩ = k2l (4π)
−2

∮
V2lTl(k̂ · r̂mm′)V′

ld
2k̂ (2.37)

where the aggregation terms V1l and V2l, the disaggregation term V′
l, and the trans-

lation term Tl are explicitly expressed as:

V1l =
∫
S
e−jkl·rim(

↔

I − k̂k̂) · gidS

V2l =
∫
S
e−jkl·rim(k̂× gi)dS

V′
l =
∫
S′ e

−jkl·rjm′gjdS
′

Tl =
L∑

nl=0

(−j)nl(2nl + 1)h
(2)
nl (klrmm′)Pnl

(k̂ · r̂mm′)

(2.38)

where
↔

I denotes the 3× 3 unit dyad and the integral is evaluated on the unit sphere,

kl = klk̂. gi and gj are the basis functions at ith and jth edges which reside in the

groups m or m′ centered at rm and rm′ respectively, and we note rim = ri − rm,

rjm′ = rj − rm′ and rmm′ = rm − rm′ . h
(2)
nl denotes the spherical Hankel function

of the second kind, Pnl
the Legendre polynomial of degree nl, and L the number of

multipole expansion terms. Then, MLFMA can be used to accelerate matrix-vector

multiplication in the iterative solving process of the resultant equation matrix.

Compared with the MLFMA for PEC targets, another set of tree structure for

inner medium is needed. In each matrix-vector multiplication, four-fold and eight-fold

of CPU time is needed respectively for near and far interactions. For large targets

discretized into millions of unknowns, memory requirement for storing those matrices

for far interaction groups increases significantly. For lossless homogenous space, its

wave number k is a real constant. By using symmetry of the aggregation matrix,

disaggregation matrix, and shifting matrix [55], the total memory requirement can be

halved for the aggregation and disaggregation matrices while the memory requirement

for the shifting matrix is reduced by a factor of four in our program by partly using

symmetry to keep high efficiency [57]. However, for lossy homogenous space, k is a

complex constant and has a imagine part. In such condition, MLFMA will lose most

of its symmetry. However, we can still use symmetry of the center shifting matrix as

usual with a small change as:

e−jkld̂·k̂ =
1

ejkld̂·k̂
(2.39)
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Problems involving more complicated objects may require effective preconditioner-

s. Tahir Malas and Levent Gurel proposed several kinds of preconditioners constructed

from the near interaction matrix of the MLFMA [124], among which the approximate

Schur preconditioner (ASP) is proved to have the best convergence and most efficien-

t. However, ASP is a complex and time-consuming preconditioning approach, and

it also requires more memory because two approximate matrix inverses need to be

computed with the sparse approximate inverse (SAI) method [124]. For electrical

large problems involving more than tens of millions unknowns, such extra computa-

tion costs are usually not preferable. Therefore, here we employ the lower triangular

approximate Schur preconditioner (LTASP) to reduce the complexity of constructing

preconditioning matrix.

M−1 =

[ (
Z̄11

)−1
0

0
(
Z̄11

)−1

] [
I 0

−Z21

(
Z̄11

)−1
I

]
(2.40)

For electrically large problems with more than tens of millions unknowns to be

solved, a sequential implementation of MLFMA is not sufficient. In order to solve

such extremely large problems, MLFMA can be parallelized on distributed-memory

architectures with different strategies increasing the problem size from tens of millions

to hundreds of millions in the last decade mostly for perfect electric conductor (PEC)

targets [55, 56, 57]. Recently, MPI based parallel implementations of the MLFMA for

solutions of problems involving homogeneous objects with diverse material properties

are presented [125, 126]. However, the simple MPI parallel schemes always perform

inefficiently because of extensive communications among processes, poor load-balance,

and unavoidable duplications of data. A flexible and efficient hybrid MPI-OpenMP

paralleled MLFMA (MPI-OpenMP-MLFMA) is used here. MLFMA is parallelized

using the hybrid partitioning strategy. The MLFMA-tree is partitioned among pro-

cesses to conduct MPI parallelization. Tasks on each process are further accelerated by

OpenMP multi-threading parallelization [58]. Such hybrid MPI-OpenMP paralleled

MLFMA is proved to have the great capability for solving PEC problems modeled

with as many as one billion unknowns. In the MPI-OpenMP-MLFMA, similar to the

hybrid partitioning strategy, a transition level is adopted. And then, a user-specified

number of OpenMP threads are forked in each MPI process. Hence the number of

processes is cut down a lot while the total number of computing units remains con-

stant. The transition level can be moved down to a finer level in the MLFMA tree

structure compared with the conventional hybrid MLFMA while compared with the
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hierarchical strategy of MLFMA, the MPI-OpenMP-MLFMA generally has a better

scalability because the additional overhead to modify data partition is completely

avoided. Here we do not give a detail description of this MPI-OpenMP-MLFMA,

readers can refer to [58] for technical details.

Figure 2.4: Schematic of hybrid MPI and OpenMP on mainstream high performance
computer platform.

In MLFMA, total CPU time is the main cost by the following parts: CPU time

for constructing matrices, including these for near field interaction and for multipole

expansion, with complexity of O(NlogN), we call it matrix filling time; CPU time for

iterative solution of the final matrix equation system with complexity of O(NlogN),

we call it solution time; CPU time for computing scattering properties, with O(NpN)

complexity of and (Np) the number of required observing angles. Also there is CPU

time used for constructing a preconditioner with complexity of O(NlogN) if the SAI

technique is employed. For a given particle and a given incident wavelength, matrix

filling and precondition constructing process need to be done for only once; iterative

solution and computing of scattering properties need to be performed for different

incident waves. Generally speaking, compared with these other three steps, CPU time

for computing scattering properties after obtaining the equivalent electromagnetic

currents (J,M) can be nearly ignored. An example is given in Table 2.1 for an

ellipsoid of aspect ratios k1 = 3.5, k2 = 2.0 and size parameter equals to 220. The

CPU time for the calculation of the scattering diagrams is only 0.6% of the total CPU

time for 1801 observe angles.
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Table 2.1: CPU time in seconds for different scattering angle numbers
Number of scattering angles 181 1801

CPU time for solving SIE (×103) 27.795 27.795
CPU time for scattering calculation(×103) 0.017 0.168

2.3 Numerical results

For the computations performed in this section, the incident plane wave propagates

always along z axis and the orientation of the particle is described by the conventional

Euler angles α, β and γ denoting respectively the angles of rotations about z axis, the

temporary y′ axis and z′′ axis. We define a triaxial ellipsoid of the semi-axes a, b, c

along the x, y and z directions respectively as shown in (Fig. 2.2). The shape of the

particle is characterized by a couple of aspect ratios, defined as k1 = b/a, k2 = c/a.

Hence we have k1 = k2 = 1 for a sphere, k1 = k2 for a spheroid and k1 ̸= k2 for a

triaxial ellipsoid. The size parameter is defined in terms of a volume-equivalent sphere

for all the cases.

Before the study of the effects of the size parameter and the aspect ratios on the

scattering properties for large spheroids, we validate our code by comparison with

the results of an independent code, i.e. the open source software ADDA [127]. We

have intended to compare their results with ADDA for large particles directly, but

the ADDA we have used failed to converge when the size of the particle is large.

Perhaps there is no precondition employed in ADDA to make sure convergence of

the iterative sovler it employed. Hence we compare only our MLFMA results with

those from ADDA for a relatively small particle. Fig. 2.5 shows the scattering matrix

elements S11, −S12/S11, −S21/S11, S22/S11 calculated by MLFMA and DDA. The size

parameter of the ellipsoid is fixed to 4.4 and its aspect ratios are k1 = 1.4 and k2 = 2.0.

The Euler angles are set to α = 30◦, β = 15◦ and γ = 0◦. The scattering angle step

in the calculation is taken to be 0.1◦. It is found that the agreement between the two

methods is excellent for these scattering matrix elements.

After validating our MLFMA code by comparing results with DDA, we will per-

form a series of numerical experiments. We divide this section into two parts, the first

one for the comparison of VCRM and MLFMA for plane wave scattering by a large

ellipsoidal particles. We want to validate the VCRM with the full wave numerical

method MLFMA, which is flexible in shape of the particle. The computed particles

include prolate spheroids and oblate spheroids with different aspect ratios, as well as
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Figure 2.5: Comparison of scattering matrix elements computed by MLFMA and
DDA for a triaxial ellipsoid (x = 4.4, k1 = 1.4, k2 = 2.0 and m = 1.555 + 0.004i)
illuminated by the plane wave of wavelength 0.633 µm. The ellipsoid is rotated with
Euler angles α = 30◦, β = 15◦ and γ = 0◦ and the observation is in yz plane.
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an ellipsoid. The second part is devoted to numerical study of the scattering matrix

elements of large ellipsoidal particles with different size parameters and aspect ratios,

as well as a Chebshev particle with different size parameters.

2.3.1 Comparisons of VCRM and MLFMA for scattering by
large spheroidal particles

In this subsection, we focus on the validation of VCRM by comparing the scattering

diagrams of large ellipsoidal particles calculated with the results of MLFMA code we

developed. Since the accuracy of MLFMA has been validated by another numerical

method DDA, and in theory these two numerical methods are flexible in shape of

the particle, here we choose results computed by our MLFMA as the reference. The

wavelength of the incident plane wave is fixed to 0.785 µm and the refractive index of

the particle is set to m = 1.33. In all the results computed by VCRM, the maximum

order of rays is set to 12 with total 4000 number of rays and 10000 scattered rays.

The diffraction effect, which is very important in the forward direction, is also taken

into consideration by using the simple model given in [22][22].

In principle, the ray model is only valid for particles of size much larger than the

incident wavelength. The first example we give here is for the comparison of VCRM

and MLFMA with LMT for a large sphere. A water droplet with radius 50 µm is

computed. The results obtained by LMT, VCRM and MLFMA are plotted in Fig. 2.6.

It can be seen from this figure that both VCRM and MLFMA are in agreement with

LMT especially in the forward and backward direction. But there are slight differences

between VCRM and LMT around 90◦ and the Alexander’s dark region while MLFMA

agrees perfectly with LMT. This is because in VCRM the surface wave effect has not

yet been taken into consideration. The scattering diagrams computed by VCRM and

MLFMA for the incident plane wave polarized in y axis (perpendicular polarization)

are shown in Fig. 2.7. It is obvious in this figure, better agreement is achieved than

that polarized in x axis (parallel polarization). Similar phenomenon has been observed

for scattering by infinite long cylinders [128, 118].

Then we examine the effect of particle size on the precision of ray model by

comparing the scattering diagrams calculated by VCRM to those obtained by LMT

and MLFMA for a particle smaller than in Figs. 2.6 and 2.7. We show in Fig.

2.8 the scattered intensities of a sphere with radius of 30 µm illuminated by the

perpendicularly polarized plane wave. We can see from this figure that, the general
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Figure 2.6: Comparison of scattering diagrams computed by LMT, VCRM and MLF-
MA for a sphere with radius of 50 µm illuminated by the plane wave of wavelength
0.785 µm. The refractive index is 1.33. the incident plane wave propagates along z
axis polarized in x axis. The observation is in xz plane. The results of VCRM and
MLFMA are shifted by 102 and 10−2 respectively for clarity.
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Figure 2.7: Comparison of scattering diagrams computed by LMT, VCRM and MLF-
MA for a sphere with radius of 50 µm illuminated by the plane wave of wavelength
0.785 µm. The refractive index is 1.33. the incident plane wave propagates along z
axis polarized in y axis. The observation is in xz plane. The results of VCRM and
MLFMA are shifted by 102 and 10−2 respectively for clarity.
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agreement between LMT and VCRM is still very good but not as good as for the

particle with radius of 50 µm. The discrepancy near rainbow angles and around 90◦

is clearly visible. The MLFMA, of course, still in very good agreement with the LMT

results.
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Figure 2.8: Same parameters as in Fig. 2.7 but the particle radius is 30 µm.

If we further reduce radius of the spherical particle to 10 µm, the difference between

VCRM and LMT becomes more important, especially for the scattering angle larger

than 60◦ where the profiles of the two curves are still similar but the details are

different. The difference in the backward direction becomes also perceivable. But the

overall accuracy of VCRM is acceptable even in such condition.

Now we study the influence of aspect ratios for prolate and oblate spheroids sep-

arately. We suppose that all the spheroidal particles have the same volume equal

to that of a sphere with radius of 30µm. We first set the aspect ratios of a pro-

late spheroid to k1 = 1.0, k2 = 1.1. In such condition, we have a = b =29.06188

µm, c =31.96807 µm. We have no LMT results for such large spheroid, so we just

compute the scattering diagrams of VCRM with MLFMA. The computed results for

parallel and perpendicular polarization as a function of scattering angles are plotted in

Fig. 2.10 and Fig. 2.11 respectively. Again we can observed that better agreement is

achieved for perpendicular polarization than that for parallel polarization. Compared

with the spherical case, there are greater discrepancies between these two curves in

the Alexander’s dark region and near the caustics. The band of the Alexander’s dark

region between primary and secondary rainbows is also wider than for the sphere. We
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Figure 2.9: Same parameters as in Fig. 2.7 but the particle radius is 10 µm.

can also observe slight differences between the results of VCRM and MLFMA in the

strong oscillation region caused by the interference of the diffracted and the reflected

waves near the forward direction.

To quantify the discrepancy between the two methods, we can use the global root

mean square (RMS) error defined as:

RMS =

√√√√ 1

No

No∑
i=1

e2 (θi), with e (θ) =
|Ical (θ)− Iref (θ)|

max |Iref (θ)|
(2.41)

with No the number of scattering angles. Ical and Iref are respectively the intensity

calculated by the VCRM and the intensity of reference (here the results of MLFMA).

the RMS in Figs. 2.11 and 2.10 are respectively 0.24% and 0.2%, so can conclude the

global agreement between VCRM and MLFMA is very good.

However, the global RMS is not suitable to evaluate the difference of the two

methods in the range of scattering angles where they have visible discrepancy since

the mean scattering intensity will be four to six orders smaller than that in the forward

direction. For example, it is clear that discrepancy around 80◦ in Fig. 2.10 is more

important than that in Fig. 2.11. Here we define an average mean relative error to

give quantitatively evaluation of the precision of VCRM as:

ē (θ) =

∣∣Īcal (θ)− Īref (θ)
∣∣

max
∣∣Īref (θ)∣∣ , θ = 0◦, 1◦, 2◦ · · · (2.42)
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Figure 2.10: Comparison of scattering diagrams computed by VCRM and MLFMA
for a prolate spheroid (k1 = 1, k2 = 1.1 and m = 1.33) with volume equal to that of
a sphere with radius of 30 µm. The plane wave of wavelength 0.785 µm propagates
along z axis polarized in x axis. The observe plane is fixed in xz plane. The results
of VCRM are shifted by 102 for clarity.
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Figure 2.11: Comparison of scattering diagrams computed by VCRM and MLFMA
for a prolate spheroid (k1 = 1, k2 = 1.1 and m = 1.33) with volume equal to that of
a sphere with radius of 30 µm. The plane wave of wavelength 0.785 µm propagates
along z axis polarized in y axis. The observe plane is fixed in xz plane. The results
of VCRM are shifted by 102 for clarity.
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where Īcal and Īref are the average value of the scattering intensities in dB calculated

for each degree by VCRM and MLFMA respectively. This choice is to avoid the high

oscillations in the scattering diagrams. They are calculated by:

Ī (θ) =
1

11

11∑
i=1

log10 [I (θ + (i− 1)× 0.1◦)] (2.43)

The calculated relative error as a function of scattering angles for Fig. 2.10 and

Fig. 2.11 are plotted in Fig. 2.12. We find that VCRM and MLFMA are in better

agreement for the perpendicular polarization than the parallel polarization around

80◦.
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Figure 2.12: Relative error between VCRM and MLFMA in Fig. 2.10 and Fig. 2.11.

We further change the aspect ratios to k1 = 1.0, k2 = 1.2 (a = b =28.23108 µm,

c =33.87730 µm) and the scattering diagrams are shown in Fig. 2.13. We can observe

similar phenomenon as in Fig. 2.11, the band of the Alexander’s dark region becomes

even wider, slight differences between results from VCRM and MLFMA in the strong

oscillation region near the forward direction.

Then in Fig. 2.14 we show the scattering diagrams to the same particle but with

the incident wave is inclined to 30◦. The scattering diagrams are no longer symmetric

as they should be, so they are given in all directions (−180◦ to 180◦). There are two

Alexander dark regions in the two sides of the scattering diagram (0◦ to 180◦ and

−180◦ to 0◦) not symmetric, as shown in Fig. 2.15: one very narrow ranges from

−97.5◦ to −93.9◦ not very visible; the other ranges from 161.8◦ to 186.2◦ (−173.8◦)

which is clearly visible. Also, the two curves by VCRM and MLFMA are again in
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Figure 2.13: Same parameters as in Fig. 2.11 except the aspect ratio is set to k1 = 1.0,
k2 = 1.2.

very good agreement except these in Alexander dark regions and near −150◦. These

effects can be clearly seen from the ray tracing graph given in Fig. 2.16. The rainbow

of the first order (blue) around −100◦ is much important that in −170◦. The peaks

around 140◦-150◦ are due to the rays corresponding to the rainbow of second order

p = 3. But the structures are very different from that of a sphere.

If we further increase the incident angle to 60◦, as shown in Fig. 2.17. There is

only one Alexander dark region in one side of the scattering diagram (−180◦ to 0◦).

It ranges from −178.3◦ to −160.6◦ and is clearly visible. The other dark Alexander

region disappears because both the rays of order p = 2 and p = 3 cover the region

from −77.4◦ to −55.9◦, as shown in Fig. 2.18. Again we can see that the two curves

of VCRM and MLFMA are in very good agreement except those in Alexander dark

regions and in the region around −60◦ where both the rays of p = 2 and p = 3 exist.

When the incident angle is set to 90◦ (Fig. 2.19), the results of VCRM and MLFMA

are in better agreement than in Fig. 2.17. This is because there is no dark Alexander

region in such condition.

If we change aspect ratio to k1 = 1.0, k2 = 1.5 (a = b =26.20741 µm, c =39.31112

µm), the Alexander’s dark region is not visible. Ray tracing in Fig. 2.20 shows that,

unlike these for sphere or prolate spheroids with small aspect ratios, when the aspect

ratio is set to k2 = 1.5, rays of order p = 2 and p = 3, which can form the primary

and secondary rainbows will be almost all in the backward and forward direction



2.3. Numerical results 43

-180 -120 -60 0 60 120 180
Scattering Angle (degree)

0

2

4

6

8

10

12

lo
g 10

(I
)

VCRM
MLFMA

Figure 2.14: Comparison of scattering diagrams computed by VCRM and MLFMA
for a prolate spheroid (k1 = 1, k2 = 1.2 and m = 1.33) with the incident angle set to
30◦. Other parameters are the same as in Fig. 2.13.
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Figure 2.15: Scattered intensities of rays order p = 2 and p = 3 for the prolate
spheroid in Fig. 2.14.
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Figure 2.16: Ray tracing for the prolate spheroid in Fig. 2.14. Incident rays: cyan,
p = 0: red, p = 2: blue, p = 3: green, p = 4: yellow.
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Figure 2.17: Comparison of scattering diagrams computed by VCRM and MLFMA
for a prolate spheroid (k1 = 1, k2 = 1.2 and m = 1.33) with the incident angle set to
60◦. Other parameters are the same as in Fig. 2.13.
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Figure 2.18: Scattered intensities of rays order p = 2 and p = 3 for the prolate
spheroid in Fig. 2.17.
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Figure 2.19: Comparison of scattering diagrams computed by VCRM and MLFMA
for a prolate spheroid (k1 = 1.0, k2 = 1.2 and m = 1.33) with the incident angle set
to 90◦. Other parameters are the same as in Fig. 2.13.
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respectively. Then the agreement between these two results are very good for the

observation angles range 90◦ to 180◦ .

Symetric axis

Figure 2.20: Ray tracing for rays of order p = 2 and p = 3 for a prolate spheroid with
equivalent radius 30 µm with aspect ratio k1 = 1.0, k2 = 1.5.
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Figure 2.21: Same parameters as in Fig. 2.11 except the aspect ratio is set to k1 = 1.0,
k2 = 1.5.

Now we examine the scattering diagram of oblate spheroids calculated by the two

methods. We set k1 = 0.9, k2 = 1.0 always for a particle of volume equivalent to a

sphere of radius 30 µm such that the three axes are a = c =31.07232 µm, b =27.96509

µm. The scattering diagrams calculated by VCRM and MLFMA are shown in Fig.

2.22. Compared with that for a sphere in Fig. 2.8, the discrepancy between the two

methods for observation angles from 70◦ to about 120◦ is more visible. There is also

a peak for the curve of VCRM at about 42◦ which differs greatly from the curve of

MLFMA. Around this angles are the rainbow of third and fourth orders (p = 4 and

p = 5) where the intensity tends to be very large and a singularity appears in VCRM.
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For the case k1 = 1.0, k2 = 0.9, equivalent to set the observation plane in yz plane in

the case above. As shown in Fig. 2.23, the agreements between the two methods is

better than that in Fig. 2.22.
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Figure 2.22: Comparison of scattering diagrams computed by VCRM and MLFMA
for an oblate spheroid (k1 = 0.9, k2 = 1.0). Other parameters are the same as in Fig.
2.11.

Our VCRM code can also calculate the scattering diagrams of large ellipsoids when

the incident plane wave remains in a plane defined by any two axis of the ellipsoid.

Fig. 2.24 and Fig. 2.25 show respectively the scattering diagrams of an ellipsoid with

k1 = 1.1, k2 = 1.2 (a =27.34827 µm, b =30.08310 µm, c =32.81793 µm) and k1 = 1.2,

k2 = 1.1 (a =27.34827 µm, b =32.81793 µm, c =30.08310 µm). The incident plane

wave is perpendicularly polarized. Similarly, good agreement can be observed.

To study the influence of size parameter, we show in the next example the s-

cattering diagram of a prolate spheroid with its volume equal to a sphere of radius

50µm (x = 400). The aspect ratios are k1 = 1.0, k2 = 1.2, which correspond to

a = b = 47.05180 µm, c = 56.46216 µm. The scattering diagrams computed by VCR-

M and MLFMA are shown in Fig. 2.26. Compared to the results in Fig. 2.13 for the

smaller prolate spheroid of 30 µm, better agreements are observed in the scattering

angles near 120◦, as the mean relative error given in the Fig. 2.27. This is because

the bigger the scatter is, the better the result of the ray model. The Alexander’s dark

region is still clearly visible.

Then we show in Fig. 2.28 the scattering diagram of an ellipsoid. The two aspect

ratios are k1 = 1.1, k2 = 1.2 (a =45.58046 µm, b =50.13850 µm, c =54.69655 µm).
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Figure 2.23: Comparison of scattering diagrams computed by VCRM and MLFMA
for an oblate spheroid (k1 = 1.0, k2 = 0.9). Other parameters are the same as in Fig.
2.22.
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Figure 2.24: Comparison of scattering diagrams computed by VCRM and MLFMA
for an ellipsoid (k1 = 1.1, k2 = 1.2) illuminated by a perpendicular polarized plane
wave. Other parameters are the same as those in Fig. 2.11.
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Figure 2.25: Comparison of scattering diagrams computed by VCRM and MLFMA
for an ellipsoid (k1 = 1.2, k2 = 1.1). Other parameters are the same as those in Fig.
2.24.
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Figure 2.26: Comparison of scattering diagrams computed by VCRM and MLFMA
for a prolate spheroid (k1 = 1.0, k2 = 1.2 and m = 1.33) with its volume equals to a
sphere with radius of 50 µm illuminated by the plane wave of wavelength 0.785 µm.
The incident plane wave propagates along z axis polarized in y axis. The observe
plane is fixed in xz plane. The results of VCRM are shifted by 102 for clarity.
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Figure 2.27: Relative error between scattering diagrams for a prolate spheroid (k1 =
1.0, k2 = 1.2 ) with different size parameters by VCRM and MLFMA.

Again better agreements can be observed between VCRM and MLFMA compared to

the results in Fig. 2.24, especially for scattering angles range from 90◦ to 120◦.

In the last example, we show in Fig. 2.29 the scattering diagram of an ellipsoid

(k1 = 1.1, k2 = 1.2, a =45.58046 µm, b =50.13850 µm, c =54.69655 µm) with

an incident angle of 30◦. Still good agreements can be observed between the two

methods. From all the numerical experiments shown in Fig. 2.6-2.29 we can conclude

that VCRM can predict with precision the scattering diagrams of a sphere, prolate or

oblate spheroids, ellipsoids of size as small as some tens of wavelengths. The larger

the size of the particle, the better the precision. However, in ray model, there are

singularities near rainbow angles for particles of refractive index greater than that of

the surrounding medium and near critical angles where the derivative of intensity is

not continuous. These problems are under study by taking into account wave effect.

For a non-spherical particle such as the ellipsoid, we can observe another kind of

singularity: transverse convergence [117]. For example, when a plane wave is incident

on a an ellipsoidal particle in xz plane and the particle has a circular section in this

(xz) plane. By changing the semi-axis in x direction, we can obtain a transverse

convergence of the wave in the direction perpendicular to xz plane. A numerical

result is shown in Fig. 2.30 for the aspect ratios k1 = 0.5, k2 = 1 (a = c =62.99605

µm, b =31.498031 µm). We found a peak near 8◦. This phenomenon is due to the

transversal convergence of the wave in the direction perpendicular to the scattering
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Figure 2.28: Comparison of scattering diagrams computed by VCRM and MLFMA
for an ellipsoid (k1 = 1.1, k2 = 1.2 and m = 1.33) with its volume equals to a sphere
with radius of 50 µm illuminated by the plane wave of wavelength 0.785 µm. The
incident plane wave propagates along z axis polarized in y axis. The observe plane is
fixed in xz plane. The results of VCRM are shifted by 102 for clarity.
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Figure 2.29: Comparison of scattering diagrams computed by VCRM and MLFMA
for an ellipsoid (k1 = 1.1, k2 = 1.2 and m = 1.33) with its volume equals to a sphere
with radius of 50 µm illuminated by the plane wave of wavelength 0.785 µm. The
incident plane wave with the incident angle 30◦ propagates along z axis polarized in
y axis. The observe plane is fixed in xz plane. The results of VCRM are shifted by
102 for clarity.
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Table 2.2: List of computation resources for the large ellipsoid particles:
Nu-Number of unknowns, Ni-Number of iterations.

Figures Nu
Memory
(GB)

Ni
CPU
(hour)

Fig. 2.26 34.5× 106 200.5 75 13.8
Fig. 2.29 34.5× 106 200.8 103 18.9

plane [117]. Scattering intensity in the forward direction is determined by rays of

order p = 0 and the two peaks are determined by rays of order p = 1. But MLFMA

does not predict any peak in this region.
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Figure 2.30: Comparison of scattering diagrams computed by VCRM and MLFMA
for a oblate spheroid (k1 = 0.5, k2 = 1) with the same volume of a sphere with radius
50 µm. Other parameters are the same as those in Fig. 2.7.

Another important advantages of VCRM is its rapidity. For all the calculations

presented in the papers, the computation time is less than one seconde on a personal

computer. MLFMA is however needs much more computer resources and CPU times.

For the calculation in Fig. 2.29, there are 34.5 × 106 unknowns and The calculation

has taken 200.8 GB memory and 18.9 hours CPU time with 36 MPI processes and

2 threads for each process. For smaller particle the CPU time and the number of

iterations are both reduced. To give a idea about the the computation resource need,

we compile in Table 2.2 the parameters used in the calculations for a large prolate

spheroid and an large ellipsoid. These two calculations are performed with 25 MPI

processes and 2 threads for each process.
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2.3.2 Scattering matrix elements for arbitrary shaped parti-
cles with MLFMA

In this last subsection, we aim on the light scattering diagrams of two kinds of large

non-spherical particles: ellipsoidal and Chebychev particles. We pay our attention

to the scattering matrix for particles with different sizes and shapes. The scattering

matrix contains all polarizing properties of the particles and plays an important role

in radiative transfer studies. Detailed definitions of the scattering elements are given

in [129].

First, we apply MLFMA to large ellipsoid particles for the study of the influence of

the size parameter on the scattering elements. We fix aspect ratios to (k1 = 1.4, k2 =

2.0) for three ellipsoids with different size parameters (x = 126, 220 and 314). Fig.

2.31 (a) illustrates the comparison of the scattering-matrix element S11(θ) of ellipsoid

particles with different size parameters. We fix α = 0◦, β = 0◦, γ = 0◦, and observe

plane in yz plane. It is evident and logical that the value of S11(θ) increases with

the size parameter. S11 has a strong oscillation behavior in the forward direction but

much smoother in the backward direction. This is not observed for a small particle

(Fig. 2.5) and can be explained by the effect of absorption. In the view point of

GO, the high order rays are absorbed by particle and the strong oscillations in the

forward direction may be understood as the interference of the diffracted and the

reflected waves. With the increment of the particle size, the curve of S11(θ) becomes

smoother. We also plot the scattering element −S12/S11 for ellipsoids with different

size parameters in Fig. 2.31 (b) and the similar phenomena caused by the effect of

absorption is observed.

Then we examine the scattering properties as function of the particle shape, or

in other words, influence of the aspect ratio for ellipsoids. Consider three ellipsoids

of equal volume with the same size parameter x = 220 and the same aspect ratio

k2 = 2.0, but different aspect ratio k1: 1.4, 2.3 and 3.5. The results are shown in

Fig. 2.32, noticeable differences can be observed for these three curves. With the

increment of k1 (i.e. the semi-axis in y direction b), S11(θ) between about 50◦ to

120◦ decreases while that for the angle larger than 100◦ increases. We observe also

a significant variation of the amplitude in forward direction. These are due to the

shape of the particle. The scattering element −S12/S11 for ellipsoids with different

aspect ratios are shown in Fig. 2.32 (b). It is noted that −S12/S11 is more sensible

to the aspect ratio in the forward direction than in the backward direction. We can
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Figure 2.31: Comparison of S11 and −S12/S11 for ellipsoids of refractive index m =
1.555+0.004i illuminated by a plane wave of wavelength 0.633 µm with different size
parameters. We set α = 0◦, β = 0◦ and γ = 0◦, and observe in yz plane.
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conclude from Figs. 2.31 and 2.32 that the scattering-matrix elements are sensitive

to the size parameter and the aspect ratio for large ellipsoidal particles.
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Figure 2.32: Comparison of S11 and −S12/S11 for ellipsoids of refractive index m =
1.555 + 0.004i illuminated by a plane wave of wavelength 0.633 µm with different
aspect ratios.

The SIE with MLFMA is flexible in term of particle shape and can be easily

applied for irregular shaped particles. To show its ability in the study of the scat-

tering properties of large particles with more complex shape, we consider Chebyshev
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particles, which shapes are defined by:

r = r0(1 +
∞∑
n=0

cn cosnθ) (2.44)

where r0 is the radius of a volume-equivalent sphere, cn are the deformation coeffi-

cients, more information for this model can be found in [130].

The geometry of Chebyshev particles under study is sketched in Fig. 2.33. In

our simulation, the deformation coefficients cn are c0 = −9763 × 10−5, c1 = 0, c2 =

−28966 × 10−5, c3 = −10143 × 10−5, c4 = −1677 × 10−5, c5 = 346 × 10−5, c6 =

173 × 10−5, c7 = 21 × 10−5, c8 = −76 × 10−5, c9 = −29 × 10−5. The axis ratio of

such particle is b/a = 0.583. The size parameter of the Chebyshev particle is taken

to be 377. In these conditions, the surface of the particle is discretized into 12× 106

triangle patches with 35.6× 106 unknowns.

The scattering matrix elements S11 and −S12/S11 calculated by MLFMA are

shown in Figs. 2.34, 2.35 and 2.36 respectively for the incident angle β = 0◦, 90◦

and 180◦ with α = 90◦ and γ = 0◦. Such condition corresponds to a rotation of

the particle respect to +x axis. When β = 0◦ and 180◦, the scattering diagrams are

symmetric about z axis, so the curves are plotted only for θ between 0◦ and 180◦ in

Figs. 2.34 and 2.36. But when β = 90◦ the scattering diagrams in all directions must

be plotted because of the asymmetry of the problem (Fig. 2.35). We remark that

when the particle is illuminated along the symmetric axis, from the bottom or the

top, the curves of S11 are similar in forward direction (Fig. 2.34 (a) and Fig. 2.36

(a)). But there is a strong oscillation in the backward direction when the particle is

illuminated from the bottom (β = 0◦). This can be explained by the interference of

the waves reflected from the hollow part of the particle. The profiles of the curves

−S12/S11 are also similar with a little shift of the peak to a larger angle for the top

illumination.

The scattering matrix elements are very different when the Chebyschev particle is

illuminated from the side (β = 90◦ Fig. 2.35). Both the curves of S11 and −S12/S11

are not symmetric about z axis, i.e. they are different in the angle ranges 0◦ - 180◦

and 180◦ - 360◦), as it should be. Also, because of its irregular shape, there is no

strong oscillation or significant variation of the amplitude in forward direction.

At last, to demonstrate the capacity of our algorithm, we consider an extremely

large Chebyshev dust particle of size parameter equal to 628. The symmetry axis of

the particle makes 45◦ with respect of the incident wave, i.e. the three Euler angles
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Figure 2.33: Illustration of a Chebyshev shaped dust particle.

are respectively α = 90◦, β = 45◦, γ = 0◦. The step of the scattering angle is now 0.1◦,

a total of 32.73× 106 triangular patches are used to model the surface of the particle

and this results in 98.19 × 106 unknowns. This calculation took 728 GB memory

and 25 hours CPU time with 70 MPI processes and 2 threads for each process. The

computed results are shown in Fig. 2.37. We found a peak at 90◦ with a strong

oscillation around. This is due to the reflection of the incident wave from the concave

bottom of the particle. For these observe angles range around 270◦, where the convex

top of the particle faces, the curve of the computed scattering elements is very smooth.

2.4 Conclusions

The classical geometrical optics model is approximated and, in principle, it can be

used to predict light scattering of very large and irregular shaped particles. In prac-

tice, it is not apt to deal with the scattering of complex shaped particle. In this

Chapter, the Vectorial Complex Ray Model (VCRM) is used for computing scatter-

ing by large ellipsoids. On the other hand, full wave numerical method SIE is applied

to deal with arbitrary shaped particles. However, because it requires large amount

of computation resources, the calculable size is severely limited. MLFMA permits

to reduce computational complexity of the SIE from O(N2) to O(NlogN), so the

scattering problem of large non-spherical particle can be solved. To further enlarge

size parameter of the particle, an efficient Hybrid MPI and OpenMP parallelization

is employed. In this chapter, the codes of VCRM and MLFMA are first validated by

comparing the scattering diagrams of a spherical particle. Then scattering diagram-

s calculated by VCRM for large ellipsoidal particles are compared to the results of

MLFMA to evaluate the precision of VCRM. Good agreements are observed between
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Figure 2.34: MLFMA results of S11 and −S12/S11 for a Chebyshev shaped particle
(x = 377,m = 1.555 + 0.004i) with Euler angle (90◦, 0◦, 0◦).
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Figure 2.35: MLFMA results of -S12/S11 for a Chebyshev shaped particle (x =
377,m = 1.555 + 0.004i) with Euler angle (90◦, 90◦, 0◦).
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Figure 2.36: MLFMA results of -S12/S11 for a Chebyshev shaped particle (x =
377,m = 1.555 + 0.004i) with Euler angle (90◦, 180◦, 0◦).
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Figure 2.37: MLFMA results of -S12/S11 for a Chebyshev shaped model (x = 628,m =
1.555 + 0.004i) with Euler angle (90◦, 45◦, 0◦).
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MLFMA and VCRM. Numerical results proved that VCRM can predict with preci-

sion the light scattering of a sphere, prolate or oblate spheroids and ellipsoids of size

as small as some tens of wavelengths. The code MLFMA developed in this thesis has

also been applied to the computation of the scattering matrix of a large ellipsoidal

particles and Chebyshev particles of a size parameter as large as 630.



Chapter 3

CTF with MLFMA for optical
force and torque

When a particle is illuminated by a beam of light, it experiences a force called radiation

pressure force (RPF) and/or torque. Under the action of the RPF generated by tightly

focused laser beams, small particles can be trapped and moved to a desired location

[60, 61, 131], while the orientation of particles can be controlled through the torque

exerted by the beam [132, 78]. The computation of RPF and torque is of growing

interest due to its importance in practical applications, such as biological cell trapping

[133], design of micromotors [134], and laser based measurement techniques [135].

Theories for RPF and torque computations have already been developed by using

different approaches. When the particle is much smaller than the wavelength, the

Rayleigh regime is concerned and RPF can be calculated by using the Rayleigh-

Debye theory [136]. In order to enlarge object size range, rigorous theory must be

developed. To do so, Gouesbet et al. developed the GLMT [5] for studies of RPF or

torque exerted on a particle of simple shape such as homogeneous sphere [70, 71, 72],

multilayered sphere [73], spheroid [12, 75] and a infinite long cylinder of circular cross

section [74]. However, the rigorous solutions of Maxwell’s equations exist only for

a particle whose shape coincides with a specific coordinates system. Furthermore,

even for large regular shaped particles such as spheroid or ellipsoid, the numerical

computation of the special function is still another obstacle.

Numerical techniques are possible ways to overcome these limitations. Researches

on the prediction of the RPF and torque exerted on non-spherical particles by using the

DDA [87, 88, 90, 91, 89, 92, 93, 94, 95, 96], the T -matrix method [79, 80, 81, 82, 83, 84]

63
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and the FDTD [97, 98, 99, 100, 101] are reported. The T -matrix method is very

efficient and applicable for large particles. But it usually relies on central expansions

of the electromagnetic field in VSWF and suitable for rotational symmetry particles.

Both DDA and FDTD are volume discretized methods. They are flexible and robust

for inhomogeneous, anisotropic particles. But the computational demands for FDTD

and DDA increases quickly and calculable size of the particle is severely limited,

especially for high refractive index particles. Approximate methods, such as ray optics,

can provide approximate results for large particles but is usually not accurate enough

[76, 77, 78].

However, trapping and manipulation of large non-spherical particles is much less

mastered both in experimental and theoretical researches. In biophysics, microflu-

idics, microelectronics and photonics, non-spherical particles such as nanotubes and

nanorods have their important applications [69, 103, 104]. Morever, experimental

researches on non-spherical particles found interesting phenomena greatly different

from spherical particles [106, 103, 78, 137]. Compared to the theoretical efforts in the

calculation of RPF or torque on spherical particles, less work on the RPF or torque

prediction for large non-spherical shape particles has been reported. In this chapter,

we present an approach for the computation of the RPF and torque exerted on large

arbitrary shape and homogenous particles illuminated by an arbitrary shaped beam.

This approach, is based on the MLFMA enhanced SIE method is presented in Chap-

ter 2. Since MLFMA is a surface discritized method with triangles patches, it can be

used for arbitrarily shaped large homogenous particles.

For a shaped beam, it is hard or even impossible to get the mathematical descrip-

tion of the electromagnetic field components, which accurately satisfies Maxwell’s

equations in far-field region [70]. In our computational approach, the RPF/torque is

computed by integrating the dot product of the outwardly directed normal unit vector

and the Maxwell stress tensor/pseudotensor over a spherical surface tightly enclosing

the particle under consideration. In this way, we can use the accurately computed

near region electromagnetic fields instead of the widely used far-field approximation

[138]. The same mathematical description of the incident beam is used for computing

both the equivalent sources in SIE and the Maxwell stress tensor because the enclosed

surface of integration can be chosen tightly to the particle surface. Since only the n-

ear fields are needed, the calculation of far field components of the incident beams is

avoided and it is not necessary to develop the incident beam with the beam shape

coefficient as done in GLMT.
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In this chapter, we first describe in detail how to compute RPF and torque with

MLFMA enhanced SIE. Then, as an example, we calculate the RPF and torque

exerted on different kinds of non-spherical particles illuminated by a Gaussian beam.

By following the same process, readers can easily use this method to deal with other

shaped beams.

3.1 Computation of radiation pressure force and

torque

When an arbitrarily shaped particle is illuminated by a shaped beam, the radiation

force and the torque exerted on the particle can be determined by integrating the

dot product of the surface normal n̂ and the Maxwell stress tensor
↔

T over a surface

enclosing the particle [138, 139]

E  H1(   ,    )
1 1(ε , µ )

M

J

(E , H )

(ε , µ )22

22

w

n̂

y

x

z

u

v
O’

1

O

Figure 3.1: Schematic of arbitrary shaped homogeneous particle illuminated by a
shaped beam and definition of Euler angles.

F =

∫
Sv

↔

T (r) · n̂ds (3.1)

M = −
∫
s

(
↔

T (r)× r) · n̂ds (3.2)

where

↔

T (r) =
1

2
Re[ε1E(r)E

∗(r) + µ1H(r)H∗(r)

− 1

2
(ε1|E(r)|2 + µ1|H(r)|2)

↔

I ] (3.3)
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is the time average Maxwell stress tensor, the asterisk * indicates for conjugate, and

E(r) and H(r) are total electromagnetic fields:

E(r) = Es(r) + Ei(r) (3.4)

H(r) = Hs(r) +Hi(r) (3.5)

If we choose a virtual sphere of radius rs tightly enclosing the particle with its center

located in the scattering object, Eqs. (3.1) and (3.2) can be written as [138]

F =
1

4

∫ 2π

0

∫ π

0

Re[ε1(|Er|2 − |Eθ|2 − |Eϕ|2)

+ µ1(|Hr|2 − |Hθ|2 − |Hϕ|2)er
+ 2(ε1ErE

∗
θ + µ1HrH

∗
θ )eθ

+ 2(ε1ErE
∗
ϕ + µ1HrH

∗
ϕ)eϕ]r

2
s sin θdθdϕ (3.6)

M =
1

2

∫ 2π

0

∫ π

0

Re[(ε1ErE
∗
θ + µ1HrH

∗
θ )eϕ

− (ε1ErE
∗
ϕ + µ1HrH

∗
ϕ)eθ]r

3
s sin θdθdϕ (3.7)

where the electric and magnetic field components are evaluated on the surface of the

virtual sphere. To be convenient, the radius rs is usually chosen to be infinite so that

the asymptotic forms can be used for the special functions [138, 75]. For time-harmonic

plane wave, such work is straightforward since the wave field expressions rigorously

satisfy the Maxwell’s equations in all space [140]. But, for a shaped beam, such as

Gaussian beam, it is hard or even impossible to get the mathematical description of

the electromagnetic fields which satisfy rigorously Maxwell’s equations in all space.

Hence, to avoid inaccuracy caused by description of the incident electromagnetic fields,

the analytical electromagnetic field expression will be used.

Once the equivalent electric and magnetic currents J and M are solved, the scat-

tered fields Es and Hs at any point can be obtained by:

Es = Z1L1(J)−K1(M) (3.8)

Hs = 1/Z1L1(M)−K1(J) (3.9)

Since only the near fields are needed for radiation force and torque, the calculation of

the incident electromagnetic fields in far region is avoided. Theoretically, the virtual

sphere can be chosen arbitrarily. However, to avoid special treatment for dealing with

the singularity of Green’s function, we choose a spherical surface tightly close to the

outer surface of the particle (minimum 0.1λ away from the particle surface S). The
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same analytical expressions of the incident wave are used for computing both the

equivalent sources in SIE and the Maxwell stress tensor.

Then, we need to deal with the spherical integral in Eqs. (3.6) and (3.7). Among

different kinds of numerical integral methods, the Gaussian surface integral is simple

with high accuracy. We choose an integral number NL to divide the interval [0, π],

such that cos θ satisfies the Gauss Legendre quadrature rule, and 2NL points averagely

in [0, 2π] for ϕ. Usually, NL is determined by

NL = k1rs + 3 ln(k1rs + π) (3.10)

To show the precision and the capability of our method for the computation of

RPF and torque, we use a focused Gaussian beam as an example. Other types of

beams can be done in a similar way. When the beam waist radius is much greater

than the wavelength, the Davis first-order Gaussian beam description [141] has been

found good enough. However, for tightly focused beams, one should consider the use of

higher-order approximate expressions. In this thesis, we adopt the Davis-Barton fifth-

order approximation [142]. The electric and magnetic fields in the beam coordinate

system (Ouvw) are given by

Ei
u = E0{1 + s2(−ρ2Q2 + iρ4Q3 − 2ξ2Q2)

+ s4[2ρ4Q4 − 3iρ6Q5 − 0.5ρ8Q6

+ (8ρ2Q4 − 2iρ4Q5)ξ2]}ψ0 exp(−ikw)
Ei

v = E0{s2(−2ξηQ2)

+ s4[(8ρ2Q4 − 2iρ4Q5)ξη]}ψ0 exp(−ikw)
Ei

w = E0{s(−2Qξ) + s3[(6ρ2Q3 − 2iρ4Q4)ξ]

+s5[(−20ρ4Q5 + 10iρ6Q6 + ρ8Q7)ξ]}ψ0 exp(−ikw)
H i

u = H0{s2(−2ξηQ2)

+ s4[(8ρ2Q4 − 2iρ4Q5)ξη]}ψ0 exp(−ikw)
H i

v = H0{1 + s2(−ρ2Q2 + iρ4Q3 − 2η2Q2)

+ s4[2ρ4Q4 − 3iρ6Q5 − 0.5ρ8Q6

+ (8ρ2Q4 − 2iρ4Q5)η2]}ψ0 exp(−ikw)
H i

w = H0{s(−2Qη) + s3[t(6ρ2Q3 − 2iρ4Q4)η]

+s5[(−20ρ4Q5 + 10iρ6Q6 + ρ8Q7)η]}ψ0 exp(−ikw)

(3.11)

with

s =
1

kw0

, l = kw2
0 (3.12)
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ρ2 = ξ2 + η2, ξ =
u

w0

, η =
v

w0

(3.13)

Q =
1

i+ 2z/l
, ψ0 = iQ exp(−iQu

2 + v2

w2
0

) (3.14)

where E0 and H0 are the amplitudes of the electromagnetic field at the center of the

beam, w0 the beam waist radius and k = 2π/λ the wave number.

However, to calculate the equivalent source of the incident wave and the total

electromagnetic field on the virtual sphere we need the incident beam expressed in

the particle coordinate system (Oxyz). The relation between the two systems can be

obtained by a translation and three rotations according to Euler angles [143, 144].

It is worth to point out that, the Euler angles describe the rotations of the beam

coordinate system (Ouvw), but not the particle system (Oxyz). Shown in Fig. 3.1

are (x0, y0, z0) the coordinate of the beam center in the particle system and α, β, γ the

three rotation Euler angles. The coordinates of a point in the particle system x, y, z

can be expressed as function of the coordinates in the beam system u, v, w: x− x0
y − y0
z − z0

 = A

 u
v
w

 (3.15)

where A is the transformation matrix:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (3.16)

and its elements are defined by

a11 =cosαcos βcos γ − sinαsin γ

a21 =− cosαcos βsin γ − sinαcos γ

a31 =cosαsin β

a21 =sinαcos βcos γ + cosαsin γ

a22 =− sinαcos βsin γ + cosαcos γ

a23 =sinαsin β

a31 =− sin βcos γ

a32 =− sin βsin γ

a33 =cos β

(3.17)
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Similarly, the electric and magnetic field components of the incident beam in the two

coordinate systems are related by: Ei
x

Ei
y

Ei
z

 = A

 Ei
u

Ei
v

Ei
w

 ,
 H i

x

H i
y

H i
z

 = A

 H i
u

H i
v

H i
w

 (3.18)

We would point out that the Eqs. (3.15) - (3.18) are valid for any shaped beam. In

the following section, we will apply the method presented above to the evaluation of

the RPF and the torque exerted by a Gaussian beam on different shaped particles.

3.2 Numerical results

Based on the algorithm described above, a code for computing RPF and torque has

been realized in Fortran 95. Moreover, parts of the code are parallelized with shared

memory multiprocessing programming-OpenMP. All the computations are performed

on Compute node-dx360 M2 of calculator ANTARES in “Centre de Ressources In-

formatiques de HAute-Normandie”(CRIHAN), France. Each node has bi-Quad-Core

Intel Nehalem EP@2.8 GHz and maximum 96 GB DDR3 memory. Mesh density in

the numerical realization is set to about 0.08− 0.1 λ. The GMRES iteration solver is

employed for solving the final matrix equation system.

The RPF and the torque on the particle are proportional to the power of the

incident beam. The results presented in this section are normalized according to the

power of the Gaussian beam given by [142]:

P =
1

2
πw2

0I0(1 + s2 + 1.5s4) (3.19)

and the intensity I0 is related to the amplitude of the electric field by I0 = E2
0/(2Z1)

with Z1 = (µ1/ε1)
1/2.

3.2.1 Radiation pressure force

We first examine the accuracy and capability of the presented method for computing

RPF on a homogenous particle. For comparison, the radiation pressure crossections

(RPCS) computed by Ren [70] with GLMT developed is chosen and the RPF is related

to the RPCS by
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Cpr = cF (3.20)

where c denotes the light speed in vacuum.

We check first the validity of our method and our code by comparing the radiation

pressure cross section (RPCS) calculated with GLMT by Xu et al. [12]. Consider a

spheroidal particle of slightly volatile silicone oil (m = 1.5) illuminated by a Gaussian

beam. RPCS as a function of the beam center position along z-axis computed by

MLFMA is presented in Fig. 3.2. A comparison of the results for a/b = 1.05 and

1.1 with those of Xu et al. (Fig. 9 in [12]) shows that the agreement is very good.

We have also calculated RPCS on a sphere with GLMT in order to evaluate the

precision of MLFMA. We find that the results of GLMT and of MLFMA (solid curve

and dot symbols in Fig. 3.2) are in good agreement with about 2% discrepancy. One

reason for this is the different computation algorithms employed in these two methods.

Another possible reason is due to the precision of the description of the beam since

we use directly analytical electromagnetic field expression [142] while in GLMT the

beam is expressed in beam shape coefficients calculated by localized approximation

[7]. Differences caused by the latter known to be relatively small or even vanish when

the beam waist is large enough. To prove this, we compute RPF on a spherical particle

with different w0 when the beam center coincide with the particle center. We define

the relative error as:
|FGLMT − FMLFMA|

|FGLMT |
× 100% (3.21)

The relative errors between the RPF computed by the MLFMA and the GLMT

as a function of w0 are shown in Fig. 3.3. As expected, the relative error decrease

with the increment of w0 and finally approximate to almost a constant. This constant

difference is caused by different computation algorithms employed and depends on

electrical size of the particle as well as its relative refractive. When the beam radius

is set to w0 = 2µm = 2λ, the relative error in Fig. 3.3 is about 11%. Despite of

the difference between two numerical methods (about 4%), it is still larger than that

in Fig. 3.2 (about 2%). This is because, for a larger particle, a more important

difference between the Davis-Barton analytical electromagnetic field expression and

the localized approximation beam description will happen.

Next, we will enlarge radius of the spherical particle to 16 µm and discuss the case

of off-axis (move along x-axis) incidence of the beam. Since the beam center is located

along the x-axis, we have y0 = 0, z0 = 0. In this calculation, the whole surface of the
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(m = 1.5) computed by our approach and by GLMT [12]. The wavelength and the
beam waist radius of the Gaussian beam are respectively λ = 0.5145 µm and w0 = 2λ.
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Figure 3.3: Relative error of longitudinal RPF on a sphere water droplet m = 1.33
with a = b = c = 8 µm versus different waists of incident beams.
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particle S is discretized into 1.08× 106 edges with total of 2.16× 106 unknowns. We

set the beam waist w0 = 3µm. The longitudinal and the transverse RPFs obtained

from the MLFMA are presented in Fig. 3.4(a) and Fig. 3.4(b) together with those

from the GLMT. As shown in these figures, again good agreements can be observed.

This computation by MLFMA costs 50GB memory and 2140 seconds wall time with

10 threads for computing each RPF point.

Next, we study effects on RPF of the incidence angles for spheroidal particles. We

fix (x0 = y0 = z0 = 0) and let the Gaussian beam incident on a spheroid polystyrene

particle (m = 1.59) located in water (m = 1.33) at different incidence angles β and set

α = γ = 0◦. In such condition, the direction of the incident beam varied in the x− z

plane. We compute the RPF by this Gaussian beam under two different conditions.

In the first condition, we fix the center of the beam to be coincident with the center

of the particle x0 = 0, y0 = 0, z0 = 0 and the beam incident direction rotate around

its center, as shown in Fig. 3.5(a). Second, the beam incident direction is rotated but

the beam center keep a distance equal to the radius c along z axis from the bottom

extremity of the particle, as schetched in Fig. 3.5(b). The three components of RPF

are depicted in Fig. 3.6 and Fig. 3.7. The main difference between this two figures

is that, there exist a positive x component force in Fig. 3.7 at about 15◦ to 55◦.

Explanation for this is that, when a beam is incident on a particle, there is not only a

force pushing the particle in its incident direction, but also a force pulling transparent

particles with an index of refraction higher than the surrounding towards the beam

axis. When the center of the beam coincide with center of the particle, this force is

very small, and when β = 90◦ this force vanishes. However, when the particle center

keeps a distance from the beam center, this force exist and sometimes may be even

very large. Hence the total force in x direction will change to the opposite direction

(pulling the particle towards the beam axis). That is also the reason when β = 90◦

the z component of RPF is non zero in Fig. 3.7. The whole outer surface of the

spheroid was discredited into triangles leading to 1.41 × 106 unknowns. The total

required memory is 28 GB. The real computation time with 10 threads for one point

including solving the resultant matrix equation system is 1800 seconds.

The above numerical experiments show the great capability of the presented MLF-

MA for computing RPF on spheroid particles. Our approach can be applied to com-

pute RPF of any shaped particle. As an example, we perform numerical experiments

on a symmetric biconcave shaped red blood cell-like particle (m = 1.4) in water

(m = 1.33) versus beam incident direction for two wavelengths. To describe the
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Figure 3.4: RPFs versus particle location along the x axis. The beam waist radius of
the incident Gaussian beam is set to w0 = 3µm, the size of the particle is assumed to
be a = b = c = 16 µm.
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Figure 3.6: RPF on an ellipsoid (a = 3 µm, b = 3 µm, c = 12 µm) polystyrene particle
(m = 1.59) in water (m = 1.33) illuminated by a Gaussian beam (λ = 0.5145 µm,
w0 = 1.3 µm). The incident beam rotates around the center of the particle.
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Figure 3.7: Like in Fig. 3.6, but the incident beam rotates around the bottom ex-
tremity of the particle.

biconcave disc shape of the cell, we employ a simple surface function as:

r(θA, ϕA) = asinqθA + b (3.22)

We set a = 3.8, b = 0.41, q = 9 and it is of the same size as the one with q = 9

in [145]. The triangle patches generated on the surface of the cell is shown in Fig.

3.8. Fig. 3.9(a)-3.9(b) show the longitude and traverse RPF versus different beam

incident directions. When a beam incident on a transparent particle, usually, it will

push the particle move along the incident direction. However, in Fig. 3.9(a), because

of the shape of the cell-like particle, when the incident wavelength λ = 0.5145 µm

and beam center not far from the point x0 = 0, y0 = 0, z0 = 0, the longitude RPF

on this particle is relatively small and opposite to the propagation direction of the

beam. For the same reason, in Fig. 3.9(b), there exists a large range of incident β that

the x direction component of the RPF opposite to each other for these two incident

wavelengths.

3.2.2 Radiation torque

In this section, we discuss the numerical computation of the radiation torque with

MLFMA. We first check the validity of our method and our code by comparing the

radiation torque calculated with GLMT by Xu et al. [75]. Consider a spheroidal

particle (m = 1.573 + 6.0 × 10−4i) illuminated by an Gaussian beam. The radiation
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Figure 3.8: Meshes for the biconcave shaped red blood cell-like particle.

torque as a function of the incident angle β computed by MLFMA is presented Fig.

3.10. A comparison of the results for a/b = 1.05 and 1.1 with those of Xu et al. (Fig.

3 in [75]) shows that the agreement is very good.

Next, we fix (x0 = y0 = z0 = 0) and let the Gaussian beam (λ = 0.5145 µm,

w0 = 1.3 µm) incident on a spheroid polystyrene particle (m = 1.59) located in water

(m = 1.33) at different incidence angles β and set α = γ = 0◦. In such condition, the

direction of the incident beam varied in the (x, z) plane. We compute the radiation

torque by this Gaussian beam under two different conditions. First, the beam coincide

with the center of the particle x0 = 0, y0 = 0, z0 = 0 and the incident beam rotates

around its center as shown in Fig. 3.5(a). Second, the incident beam rotates around

the bottom extremity of particle but the beam center keeps a distance equal to the

radius c along the z axis, as shown in Fig. 3.5(b). The computed torques are shown

in Fig. 3.11. Since there are no torque components about the x and z axes, only

y component of the torque is plotted. Here we define the positive (negative) torque

causing counterclockwise (clockwise) rotation of the spheroid particle about the y

axis. When the direction of the incident beam rotation around the center of the

particle (x0 = y0 = z0 = 0), the radiation torque always makes the spheroid particle

rotation counterclockwise. Such phenomenon can be easily understood, because in

both numerical and experimental researches, optically trapped objects were found

trying to align its major axis along the direction of the laser beam propagation under

a rotational torque. When the beam rotates around the bottom extremity of spheroid

and incident angle β = 0◦, there is no rotational torque because of symmetry of the

particle. When β = 90◦ the radiation force will push the particle along its propagation

direction (−x axis). Hence there is a positive torque at β = 90◦ because lower part

of the spheroid will experience larger radiation force than the upper part. Compared

with the center-around rotation beam incidence, when the direction of the beam
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Figure 3.9: RPF on a biconcave cell-like particle (m = 1.4) in water (m = 1.33) versus
beam incident angle for two wavelengths. The waist radius of the Gaussian beam is
w0 = 2 µm. The diameter of the cell-like particle is d = 8.419 µm (xy plane), the
maximum and the minimum thickness are hM = 1.765 µm and hm = 0.718 µm.
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Figure 3.10: Comparison of the radiation torque on two prolate particles (m = 1.573+
6.0 × 10−4i) of aspect ratios a/b=1.01 and 1.10 computed by our approach. The
wavelength and the beam waist radius of the Gaussian beam are respectively λ =
0.785 µm and w0 = 1.0 µm. The center of the particle coincides with the beam
center. The spheroids have the same volume as the sphere of radius r = 1.0 µm (Fig.
3 in [75]).

rotation around the extremely bottom of the particle, at the range of about 25◦ to

55◦ there exist torques try to make the particle rotate clockwise. The explanation for

this is that, when a beam incident on a particle, there is not only a force pushing the

particle in its incident direction, but also a force pulling transparent particles with an

index of refraction higher than the surroundings towards the beam axis. The pushing

force will generate a positive torque and the pulling force sometimes can generate a

negative torque even larger than that generated by the pushing force.

Next, we perform numerical experiments on the symmetric biconcave shaped red

blood cell-like particle as shown in Fig. 3.8. The corresponding radiation torque is

shown in Fig. 3.8 versus different incident incident β is computed, as shown in Fig.

3.12. It can be observed in this figure, in all range of 0◦ to 90◦, the radiation torques

are always negative causing clockwise rotation of the biconcave cell. This is because

the biconcave cell can approximately be treated as a oblate spheroid particle. This

agrees with the conclusion that optically trapped objects were found trying to align

its major axis along the direction of the laser beam propagation under a rotational

torque. Also our simulated results in Fig. 3.11 and Fig. 3.12 agree with the conclusion

in [75], the positive (negative) torque causing counterclockwise (clockwise) rotation
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Figure 3.11: Radiation torque on an ellipsoid (a = 3 µm, b = 3 µm, c = 12 µm)
polystyrene particle (m = 1.59) in water (m = 1.33) illuminated by a Gaussian beam
(λ = 0.5145 µm, w0 = 1.3 µm). The incident beam rotates around the center of the
particle as shown in Fig. 3.5(a).

of the prolate spheroid particle about the y axis, but opposite rotation direction for

the oblate spheroid particle.

At last, to give a final examples of MLFMA capabilities, we simulate the radiation

torque on a regular motor, as shown in Fig. 3.13. The motor is immersed in water. A

middle hole of 2 µm in diameter is made to accommodate the axle. The individual fan

thickness is 1 µm for the motor. The center of the incident Gaussian beam propagating

in −z direction keeps a constant distance of 10 µm away from center of the motor in

its incident direction [134]. The radiation torques for the micro motor versus beam

center move along y axis are shown in Fig. 3.14. The torque is found symmetrical

with respect to the axis y0 = 0. Because of the symmetric nature of the structure,

there is only the torque component in x axis.

3.3 Conclusions

In this Chapter, the SIE method is used for computing RPF and torque on arbitrary

shaped homogenous particles. Triangles patches are used to discrete the outer surface

of the particles, which make this method especially flexible and efficient for modeling

irregular shaped particles. The MLFMA is employed to reduce the computational
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Figure 3.12: Comparison of the radiation torque on the biconcave cell-like particle in
water (as shown in Fig. 3.8). The waist radius of the Gaussian beam is w0 = 2 µm.
The diameter of the particle is d = 8.419 µm (xy plane), the maximum and the
minimum thickness are hM = 1.765 µm and hm = 0.718 µm.

Figure 3.13: Geometry of the regular motor.
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Figure 3.14: Torque versus a varying offset in y evaluated for a motor (m = 1.58) in
water (m = 1.33). The incident beam is set to λ = 1.07 µm, w0 = 3.6 µm and keep a
constant distance z = 10 µm to center of the motor in its propagating direction. The
motor is 2 µm in heights (x− axis) with diameters 10 µm (yz − plane).

and storage complexity. The RPF and torque are computed by integrating the dot

product of the surface normal and the Maxwell stress tensor over a surface enclosing

the particle. Furthermore, the analytical electromagnetic field expression in near

region is used. The present method is validated and its capability illustrated in several

characteristic examples. RPF and torque on an arbitrary particle by other kinds of

shaped beams are under study.
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Chapter 4

Computation of stress on
arbitrarily shaped particles

A particle illuminated by a beam of light experiences a RPF, and this force can be

used to trap and manipulate small particles without any mechanical contact. Various

instruments have been developed to make use of this radiation force, such as the

Optical tweezers, which use single focused beam to trap particles [61], while in the

optical stretcher two shaped beams are employed [62]. Since then, optical trapping

become a more and more important tool for researches in the fields of biology, physical

chemistry and soft condensed matter physics [133, 66, 146]. When a soft particle is

trapped or manipulated, its shape may be deformed due to the nonuniformity of

the radiation stress on the surface, a sphere may become non-spherical. Knowing the

deformation, one can discern properties of soft particles, such as viscoelastic properties

of cells [62]. On the other hand, in many practical applications, the shape of particles is

irregular. By applying a specific shaped beam, one may deform the particle as wanted

due to the surface stress. Therefore, the numerical prediction of the surface stress on

an arbitrarily shaped particle is of crucial importance for real-time applications.

Along with experimental researches, various kinds of computational methods have

been developed to perform numerical prediction of radiation force exerted on particles

by shaped beams. These methods include: GLMT [70, 71, 12], T -matrix technique[25,

80, 147, 85, 83, 148], DDA [86, 90, 91, 95, 149], FDTD [100, 99, 101] and FEM [102].

In principle, numerical methods for computing overall net force on a particle can

also be applied for computing surface stress. But only a few studies on the surface

stress of a soft particle have been reported. Ekpenyong et al. [150] and Sebastien

83
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et al. [151] have employed the classical geometrical optics to approximate the stress

distribution as well as to compute the deformation of a spherical particle with the

elastic membrane theory. A rigorous theory (GLMT) and an approximate method

(GO) have been applied by Xu et al. to the prediction of the optical stress distribu-

tion on the surface of a homogeneous sphere [152]. Similar work has been reported

recently for an prolate spheroid in dual beam trapping of aspect ratio equal to 1.2

andx < 50 [153]. But neither the influence of aspect ratio nor the incident angle

were studied. However, these parameters play crucial roles in the distribution of the

surface stress. Furthermore, a spherical or spheroidal particle of soft material will be

deformed under the radiation force. Therefore the numerical methods for the compu-

tation of surface stress on an arbitrary shape particles is to be developed. So far, GO

and GLMT are difficult or even impossible to be applied to predict the surface stress

on an non-spherical particles. In principle, numerical methods such as DDA, FDTD

can be applied for arbitrary shaped particles. However, as far as we know, only one

paper dealt with the surface stress on a biconcave red-blood cell with the plane wave

incidence by using FDTD [154].

In this chapter, we report our study on the surface stress exerted on an arbitrary

shaped soft particle with MLFMA [155]. This method can deal with particles larger

than the above mentioned numerical techniques. It is more accurate than the high fre-

quency asymptotic methods such as GO. Compared to the rigorous theory as GLMT,

it is flexible and can be easily applied to arbitrary shaped particles and arbitrary

shaped beams. For the convenience of presentation, we first focus our attention to the

radiation stress on spheroids with different aspect ratios and beam incidences. This

is because, in one hand, a spheroid is the simplest non-spherical particle, its physical

characteristics can be observed through ray tracing in VCRM; on the other hand, the

aspect ratio of a spheroid can be easily controlled while keeping its volume the same

as the original sphere. Moreover, the particle size should be larger than the incident

wavelength and the beam waist in order to show clearly the effects of the aspect ratio.

Here we use a single Gaussian beam as an example for detailed analysis. Surface

stress on a soft particle trapped with more than one beam incidence can be easily ob-

tained by using the superposition principle. Then, our computations are extended to

an irregular shaped biconcave cell-like particle trapped in water by a Gaussian beam

with different beam waist radii and incident directions. An example is also given to

show the capabilities of our algorithm. When parallelized with MPI on a memory

distributed computer system, the size parameter can be as large as several hundred,

i.e. x = 640.
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4.1 Computation of optical stress by SIE with MLF-

MA and VCRM

To compute optical stress on the surface of an arbitrary shaped particle, we first need

to solve a light scattering problem. By supposing the boundary S of the homoge-

neous dielectric particle is taken as the electromagnetic fields equivalent surface, with

the incident electromagnetic fields denoted as (Ei,Hi) and the equivalent electric and

magnetic currents as (J,M), we can obtain the equation form of combined tangential

formulation (CTF) [121], as described in Chapter 2. Then by following the procedure

of the MoM, and using the RWG vector basis functions [51], a complete matrix equa-

tion system can be obtained. After solving this matrix equation with iterative solvers,

such as the GMRES, the equivalent sources (J,M) on the surface S can be known. To

speed up the matrix-vector multiplication and reduce the memory requirements, the

MLFMA is employed here, which can reduce both the time and the memory complex-

ity from the order of N3 or N2, to the order NlogN , with N the number of unknowns

[123, 49, 52].

When an arbitrarily shaped particle is illuminated by a shaped beam, the surface

stress at r can be calculated by:

F = −n̂ ·
[↔

T 2 (r)−
↔

T 1 (r)
]

(4.1)

where n̂ is the outward normal of the particle surface and

↔

T l (r) =
1

2
Re[εlEl(r)El

∗(r) + µlHl(r)Hl
∗(r)

− 1

2
(εl|El(r)|2 + µl|Hl(r)|2)

↔

I ] (4.2)

is the time average Maxwell stress tensor outside (l = 1) and inside (l = 2) the particle,

the star * stands for conjugate, and El(r) and Hl(r) are total electromagnetic fields.

We should note that there is a minus sign in Eq. (4.1) because the stress exerted by

the external (internal) fields acts on the external (internal) sides of the surface.

Once the equivalent electric and magnetic currents J and M are solved by using

SIE with MLFMA, the scattered fields Es
1 and Hs

1 at any point outside the particle

can be obtained by:

Es
1 = Z1L1(J)−K1(M)

Hs
1 = 1/Z1L1(M)−K1(J) (4.3)
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The operators L1 and K1 are defined as:

L1{X}(r) = jk1

∫
S

[X(r′) +
1

k21
∇(∇′ ·X(r′))]G1(r, r

′)dr′ (4.4)

K1{X}(r) =
∫
S

X(r′)×∇′G1(r, r
′)dr′ (4.5)

where j =
√
−1, k1 = ω(µ1/ϵ1)

1/2, X is either the equivalent electric current J or the

equivalent magnetic current M on S, and

G1(r, r
′) =

exp (−jk1|r− r′|)
4π|r− r′|

(4.6)

Then the total electromagnetic fields outside the particle can be known by:

E1(r) = Es
1(r) + Ei(r)

H1(r) = Hs
1(r) +Hi(r) (4.7)

According to the boundary conditions on the surface of the particle, the tangential

components of EM fields are continuous

Et
2 = Et

1 = n̂× (E1 × n̂)

Ht
2 = Ht

1 = n̂× (H1 × n̂) (4.8)

and the relations for the normal components are

ε2E
n
2 = ε1E

n
1 = ε1(E1 · n̂)n̂

µ2H
n
2 = µ1H

n
1 = µ1(H1 · n̂)n̂ (4.9)

By using the above boundary conditions, the total electromagnetic fields inside the

particle can be obtained and the surface stress can be computed by Eq. (4.1). It can

be known from Eqs. (4.1), (4.8) and (4.9) that the surface stress is always normal to

the particle surface [154].

To show the precision and the capability of our method for the computation of

surface stress, we use a focused Gaussian beam as an example. Other types of beams

can be done in a similar way. Here we adopt the Davis-Barton fifth-order approxi-

mation [142] of Gaussian beam and the stress on the particle is proportional to the

power of the incident beam and here it is normalized according to the power of the

Gaussian beam.
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4.2 Numerical results and discussions

Based on the algorithm described in the previous section, a code for computing the

stress on the surface of a particle has been written in Fortran 95. A part of the code is

parallelized with shared memory multiprocessing programming – OpenMP. To further

improve its capability, for large prolate spheroids, this code is parallelized with MPI

on memory distributed computer system by following [58].

We check firstly the validity of our program by comparing the stress profile calcu-

lated with GLMT by Xu et al. [152] for a water droplet (m = 1.330 + 1.342× 10−7i)

of radius a = 20 µm illuminated by a Gaussian beam of waist radius w0 = 16 µm.

The wavelength of the incident beam is λ = 0.785 µm and the size parameter of the

particle isx = 160. In this calculation, the whole surface of the droplet is discretized

into 1.62 × 106 triangle patches with total 4.86 × 106 unknowns. This calculation

takes about 37 GB memory and 70 minutes CPU time with 10 OpenMP threads.

The surface stress profile computed by MLFMA is presented in Fig. 4.1. This profile

is in good agreement with GLMT results in Fig. 10 in [152]. We have also compared

the stress profiles computed by our method with those in Fig. 3 and Fig. 5 in [152]

and the agreement is always very good. Also, as another validation, the integral of

the stress profile over the surface of a non-absorbing sphere has been carried out and

the result agrees perfectly with the total radiation force from the MLFMA solution

presented in our previous paper [156].

In what follows, we study the radiation stress on non-spherical particles. First,

we choose a spheroid particle to study the influence of the aspect ratio, the beam

waist radius and the incidence conditions. We still consider a water droplet, initially

spherical of radius 8 µm, deformed to a spheroid of different aspect ratios c/a with c

the radius of the spheroid along z axis and a along x and y axis. Then, the surface

stress on a more complex biconcave cell-like particle will be studied. At last, surface

stress on a large prolate spheroid with size parameter up to 640 is computed to show

great capability of the presented method.

The wavelength of the incident beam is fixed to 0.785 µm for water droplet and

0.6328 µm in vacuum for biconcave cell-like particle. We denote by β the angle

between the propagation direction of the incident beam and +z axis. To study the

influence of beam waist radius, we choose w0 = 100 µm and 2 µm for all the particles

except in the last example for a large spheroid where w0 = 50 µm. Since the stress on

the surface of a particle is always normal to the particle surface and the origin of the
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Figure 4.1: Stress profile on the surface of a spherical water droplet of radius 20 µm
and refractive index m = 1.330 + 1.342 × 10−7i illuminated by a Gaussian beam
polarized in the x direction of wavelength 0.785 µm and waist radius w0 = 16 µm.
The droplet center coincides with that of the beam. Cartesian plot of the stress is in
the xz plane.

particle coordinate system is at the center of the particle, only the polar angle θ is

necessary to locate points on the surface of spheroids and only one curve is sufficient

to present the stress profile. Two polarizations of incident beam will be considered,

one in xz plane and the other in yz plane.

4.2.1 Large incident beam

For practical consideration and convenience of presentation, a large Gaussian beam

will be used to study the case of plane wave. In such way, the stress can be expressed

in pascal per watt (Pa/W ), independent of the power of the incident laser beam,

and it is easy to compare quantitatively the stress with the case where the particle is

illuminated with a focused beam.

When the beam waist of the incident beam is large compared to the particle size

a (say w0 = 100 µm for a particle of 20 µm or 30 µm), and both a and w0 much

greater than the wavelength, the ray model can be applied to analyze the physical

effects and to help to check the results, at least qualitatively. Therefore, each case will

be come with an analysis based on our recently developed ray tracing model VCRM

[22]. To ease the understanding of such analysis, we recall some effects on the stress
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prediction by ray tracing. When a ray is incident from outside to the particle (p = 0),

the forces caused by the reflection and the refraction are in the opposite directions,

while if a ray is incident on the internal surface of a particle (p > 0), the forces caused

by the reflection and the refraction are in the same direction [152]. In general case,

low order rays p = 0, 1 provide the major contributions to the surface stress since the

amplitude of higher order rays decreases rapidly.

We begin with the simplest case: a spherical water droplet of radius 8 µm. The

computed stress profile in xz plane together with the ray tracing graph are shown in

Fig. 4.2. Since in such condition, the surface stress profile is symmetric about z axis,

only stress profile in the range of θ = 0◦ to 180◦ is plotted. It can be seen that the

rays of order p = 1 focus near the +z axis from θ = −20◦ to θ = 20◦, the surface

stress in that range is therefore much larger than elsewhere.
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Figure 4.2: Stress profile on the surface of a spherical water droplet (m = 1.33) with
radius 8 µm illuminated by a large Gaussian beam and ray tracing of order p = 1.
The wavelength of the incident beam is 0.785 µm and its beam waist w0 = 100 µm.

A prolate spheroid can be regarded as a sphere by stretching so that its volume

remains the same. The computed stress profile on surface of a prolate spheroid with

aspect ratio c/a = 3/2 is shown in Fig. 4.3. The surface stress has a peak at 0◦ and

and decreases rapidly to nearly zero at about 10◦. The ray tracing shows that, with

this aspect ratio, the first order rays (p = 1) focus strongly near +z axis and the

number of the rays near +z axis is the largest and decreases rapidly to nearly zero

at 10◦. Besides, at a point on or near +z axis, the reflection and refraction force has
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no or very small tangential component and they are in the same direction, hence the

stress on and near +z axis is much larger than the maximum stress of a sphere and

more focused in the forward direction.
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Figure 4.3: Stress profile on the surface of a prolate spheroid with aspect ratio c/a =
3/2 and ray tracing of order p = 1. The prolate spheroid has the same volume as a
sphere of radius 8 µm. Other parameters are the same as those in Fig. 4.2.

We increase the aspect ratio to c/a = 2 and find that the stress maximum go

apart from the symmetric axis, in about 15◦ (noted as point A in Fig. 4.4). The ray

tracing shows that many rays of order p = 1 focus in that region. However, the rays

arriving at this point experienced an incident/refraction angle larger than in the case

of sphere shown in Fig. 4.2, the Fresnel transmission coefficient is then smaller, hence

the maximum value of stress is smaller than that on the sphere.

When we further increase the aspect ratio to c/a = 5/2, the maximum stress

appears on a point near θ = 23◦ (point A in Fig. 4.5) because most of the first order

rays focus in that direction. We find also another maximum near 7◦. This is not a

contribution of the first order rays, but the second order rays (p = 2). We observe

that lots of the seconde order rays focus at a point around 7◦ (point B). When the

aspect ratio is increased to c/a = 3, a similar phenomenon is observed (Fig. 4.6).

But the stress due to the second order rays (point B) is larger than that of the first

order rays (point A). This is because the rays at point B are nearly normal to the

surface while the rays at point A are more tilted to the surface such that the tangent

components of the electromagnetic fields are less than that at point B.
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Figure 4.4: Stress profile on the surface of a prolate spheroid with aspect ratio c/a = 2
and ray tracing of order p = 1. The prolate spheroid has the same volume as a sphere
of radius 8 µm. Other parameters are the same as those in Fig. 4.2.
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Figure 4.5: Stress profile on the surface of a prolate spheroid with aspect ratio c/a =
5/2 and ray tracing of orders p = 1, 2. The prolate spheroid has the same volume as
a sphere of radius 8 µm. Other parameters are the same as those in Fig. 4.2.
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Figure 4.6: Stress profile on the surface of a prolate spheroid with aspect ratio c/a = 3
and ray tracing of orders p = 1, 2. Other parameters are the same as those in Fig.
4.2.
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Figure 4.7: Stress profiles on the surface of oblate spheroids with different aspect
ratios but the same volume as that of a sphere of radius 8 µm and ray tracing of order
p = 1 when c/a = 2/3. Other parameters are the same as those in Fig. 4.2.
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For oblate spheroid particles, the focusing effect is less important, therefore the

variation of the stress profile as function of the aspect ration is not so significant. The

stress profiles for aspect ratios c/a = 2/3, 1/2, 2/5 are plotted in Fig. 4.7. But we just

show the ray tracing for the oblate of aspect ratio c/a = 2/3. We find that the stress

profiles of the oblate with three aspect ratios are similar to each other. Each stress

profile has three maxima, one in forward direction, one in the backward direction and

the third one locates at the point where the rays of order p = 1 focus. With the

increment of the aspect ratio, the third maximum point tends to θ = 90◦. Another

important difference from the spherical or prolate spheroids is that the surface stress

at θ = 180◦ can be very important due to the backward reflection.

From the above simple examples of a large incident beam along the symmetric

axis of the spheroid, we see that the stress profile on the particle surface depends

much the shape of the particle. The contributions of high orders rays can become

important in certain cases.

When the incident beam makes angle β with the symmetric axis of the spheroid,

the stress profile is no longer symmetric. We show in Fig. 4.8 the stress profiles when

a prolate of aspect ratio c/a = 2 is illuminated by a large beam at three different

angles. β = 0◦ is the case we discussed in Fig. 4.4, the two symmetric maxima are

located now in θ = 15◦ and 345◦. But when β > 0◦, the optical stress profiles are

no longer symmetric about the symmetric axis of the particle. With increment of the

incident angle, the maximum stress points move to larger angles and the maximum

value may be very important. For the cases β = 15◦ and 30◦, in the small angle side

the stress maximum points are well separated and located respectively at θ = 30◦

and 60◦. While the stress maximum points in large angle side vary little as function

of incident angle. The maximum value of stress in small angle side is also much

important than that in the other side. This can be explained by ray tracing shown in

Fig. 4.8. The stress at point A in the small angle side is due to the first order rays

and its value is more important than that at point B which is caused by the second

order rays.

The stress profile for the same particle illuminated by the same beam as in Fig.

4.8 with observation plane in yz plane is shown in Fig. 4.9. The optical stress profiles

are symmetric so only the profile between 0◦ and 180◦ is presented. When β = 0◦

the maximum stress locates near 15◦ and its strength is much important than that in

other two incidences.
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Figure 4.8: Stress profiles on the surface of a prolate spheroid with aspect ratio c/a = 2
but different incident angle β and ray tracing of orders p = 1, 2 when β = 15◦. Other
parameters are the same as those in Fig. 4.2.
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Figure 4.9: Stress profiles on the surface of a prolate spheroid with aspect ratio c/a = 2
and different incident angle β. The observation plane is in yz plane (ϕ = 90◦). Other
parameters are the same as those in Fig. 4.8.
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If the shape of the particle is complex, it is easy to imagine that the stress profile

will be more complicated and difficult to calculate and analyze. To show the ability

of our method to deal such problems, we choose the blood cells as example. Knowing

the surface stress of such kind of particle can help to characterize the elasticity of

cells. Consider a biconcave cell-like particle (m = 1.41) in water (m = 1.33) locat-

ed at the center of a Gaussian beam of beam waist w0 = 100 µm and wavelength

λ = 0.6328 µm in vacuum. The stress profiles on the biconcave particle with the

geometrical parameters (q = 9) in [145] and different beam incident direction β are

shown in Fig. 4.10. Since this cell-like particle is very thin and it is embedded in water

(so the relative refractive index is small), the stress on surface of the particle in xz

plane is small and almost uniform in all direction for β = 0◦. When β = 45◦, because

of its irregular shape, the maximum stress point does not locate in the forward or

backward direction of the incident beam, but at θ = 285◦. When β = 90◦, there are

several peaks. The maximum stress locates at θ = 90◦, which is the forward direction

of the incident beam. Also, unlike the spheroid particle, the stresses at the poles of

the cell-like particle or in the sides of the incident beam (θ = 0◦, 180◦) are relatively

important.
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Figure 4.10: Stress profiles on a biconcave cell-like particle (m = 1.4) in water (m =
1.33) with different incident angle β. The waist radius of the Gaussian beam is
w0 = 100 µm with wavelength λ = 0.6328 µm in vacuum. The diameter of the cell-
like particle is d = 8.419 µm (xy plane), the maximum and the minimum thickness
are hM = 1.765 µm and hm = 0.718 µm.

We show also the stress profile in the plane yz, perpendicular to the plane defined

by the symmetric axis of the particle and the propagation direction of the incident
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beam. Because of the symmetry, only the profile between 0◦ and 180◦ is presented.

We observe a peak in about 80◦ for β = 0◦ and 45◦ and two maxima around 40◦ and

140◦ for β = 45◦ and 90◦. We note also the the amplitude of the stress at θ = 0◦ and

180◦ as those in Fig. 4.10 as they should be.
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Figure 4.11: Stress profiles on the biconcave cell-like particle in water with different
incident angle β. The observation plane is in yz plane (ϕ = 90◦). Other parameters
are the same as those in Fig. 4.10.

4.2.2 Focused Gaussian beam incidence

When the Gaussian beam is highly focused, with a beam waist radius w0 = 2 µm

for example, the illumination intensity on the particle is strongly nonuniform. The

classical ray model is stricto sensu no longer valid to describe the propagation of the

beam nor to interpret its interaction with the particle. But it can still be used to give

a qualitative analysis and to help check our calculation.

Again we start with a sphere. Fig. 4.12 shows the computed stress profile for a

water droplet (m = 1.33) of radius a = 8 µm located at the center of the beam. The

particle radius being much larger than that of the beam waist, the stress is dominated

by the contribution of paraxial rays. Therefore, the two maxima are located on z

axis one in forward direction and the other in backward directions. Then the stress

decreases rapidly to zero with the angle θ. Since the beam waist radius is smaller

than that in Fig. 4.2, the stress is stronger.

Then we compute the surface stresses on prolate spheroids and study the influence
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Figure 4.12: Stress profile on the surface of a spherical water droplet of radius 8 µm
and refractive index m = 1.33 illuminated by a polarized (in the x direction at the
waist) Gaussian beam of wavelength 0.785 µm and waist radius w0 = 2 µm. The
droplet center coincides with that of the beam. Plot of the stress in the xz plane.

of aspect ratios. The computed stresses for a spheroid of three aspect ratios c/a = 3/2,

2 and 5/2 are plotted in Fig. 4.13. Similar to the case of sphere, the surface stress

on a prolate spheroid is also dominated by the contribution of the paraxial rays and

the two zones of strong stress are located in forward and backward direction. We find

also that the stress on the shadowed hemisphere decreases as function of the aspect

ratio. This is because the curvature radius of the spheroid face to the incident beam

decreases and the beam is more diverged by the particle. The fact that the maximum

stress for aspect ratio c/a = 5/2 is located at 7◦ instead of 0◦ can be explained by the

similar effect as point B in Fig. 4.5 using the ray tracing. It should note that the rays

which contribute to the stress on point A in Fig. 4.5 come mainly from the incident

rays relative far from the beam axis and their intensities are very weak in case of Fig.

4.13, so the peak at 23◦ disappears.

In the case of oblate spheroids illuminated by a tightly focused beam, the surface

stress profiles for different aspect rations are similar to each other, as shown in Fig.

4.14. This is because the illuminated zone is relatively small and the surface curvature

of the particle is also large. When the aspect ratio is sufficient small, the oblate

spheroid is similar to a lame of parallel surfaces. There are only two stress peaks, one

in the forward direction and the other in the backward direction and their profiles

depend on the shape of the incident beam.
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Figure 4.13: Stress profiles on the surface of prolate spheroids with different aspect
ratios but the same volume as that of a sphere of radius 8 µm. Other parameters are
the same as those in Fig. 4.12.

0 30 60 90 120 150 180
θ [deg]

0

100

200

300

400

St
re

ss
 (

Pa
/W

)

c/a=2/3
c/a=1/2
c/a=2/5

kO

Figure 4.14: Stress profiles on the surface of oblate spheroids with different aspect
ratios but the same volume as that of a sphere of radius 8 µm. Other parameters are
the same as those in Fig. 4.12.
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We show then, in Fig. 4.15, the optical stress on the surface of a long prolate

spheroid (c/a = 2) illuminated by a tightly focused beam with three incident angles

β = 0◦, 15◦ and 30◦. And we observed that the maximum value of the stress increases

as function of the incident angle. This can be explained by the fact that, when

β = 0◦, the incident rays are so strongly focused on the first surface that they form a

focal point in the particle and then largely diverged when they arrived on the second

surface. If the incident angles β = 15◦ or 30◦, the incident rays are converged to the

second surface such that the intensity on the surface is relatively important, so does

the stress. We find also that the points of the maximum stress in the forward direction

are not exactly in the direction of the incident beam, θ = 30◦ and 50◦ respectively for

β = 15◦ and 30◦. This is due to the deviation of the rays in the particle.
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Figure 4.15: Stress profiles on the surface of a prolate spheroid with aspect ratios
(c/a = 2) but different incident angle β. Other parameters are the same as those in
Fig. 4.12.

When a particle is illuminated by a tightly focused beam, the distribution of

the stress on the particle surface depends also on the beam position relative to the

particle. Consider still a prolate spheroid of aspect ratio c/a = 2 with a = 6.35 µm

and c = 12.70 µm so that its volume is the same as a sphere of radius a = 8 µm. The

Gaussian beam (w0 = 2 µm) propagates along the symmetric axis z of the particle

with the center moving along x axis. We note the position of the beam center in

the particle coordinate system by (x0, y0, z0) and we will study three cases : (0, 0, 0),

(−3w0, 0, 0), and (−4w0, 0, 0), namely on axis, off axis inside the partible and off-

axis outside of the particle. The computed stress profiles are shown in Fig. 4.16.
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Unlike the profile for on axis case, the maximum stress points in the off axis cases

are located in the forward direction at about θ = 15◦ due to the deviation of the rays

in the particle and their peaks are narrow because of the focalization of the rays in

the particle. The maximum stress points in the backward direction go to much larger

angle positions and the peaks are much larger, this is due mainly to the shift of the

incident beam (refer to the lower part of the particle in ray tracing Fig. 4.4). The ray

tracing shows that, for the prolate spheroid, the incident rays at lower part of particle

will focus at point A. Since when beam center locates at (−4w0, 0, 0), less number of

rays with higher intensity incident into the particle and then focus near that point,

optical stress on surface of the spheroid is smaller.
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Figure 4.16: Stress profiles on the surface of prolate spheroid with aspect ratios c/a =
2. Other parameters are the same as those in Fig. 4.12. The beam has its center
(x0, y0, z0) located at (0, 0, 0), (3w0, 0, 0), and (4w0, 0, 0), respectively.

Then we apply our method to study the radiation stress on the surface of a cell-like

particle when it is illuminated by a focused Gaussian beam. We take the same particle

as in Fig. 4.10 and a beam of waist radius w0 = 2 µm illuminating the particle with

different angle β. The computed stress profiles in the incident xz plane are shown

in Fig. 4.17. Since the beam is highly focused, when β = 0◦, like those for oblate

spheroids, the stress maxima are located at the forward and backward directions of

the incident beam. The stress near the poles (θ = 90◦, 270◦) are almost zero. The

stress profile for β = 45◦ is similar to that for β = 0◦, but it is shifted to the large

angles. When β = 90◦, the the stress profile is very different, apart from the maxima

in the two region around θ = 0◦ and 180◦, two maxima appear in the backward and
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Figure 4.17: Stress profiles on a biconcave cell-like particle (m = 1.4) in water (m =
1.33) with different incident angle β. The waist radius of the Gaussian beam is
w0 = 2 µm with wavelength λ = 0.6328 µm in vacuum.

forward direction of the incident beam θ = 90◦, 270◦. It is clear that stress profiles

for the biconcave particle is more complex than for spherical or spheroidal particle

since its structure is irregular.

At last, to show great capability of our present method for the numerical prediction

of radiation stress on the surface of a very large prolate spheroidal water droplet

(m = 1.33) with aspect ratio c/a = 2 and the same volume as that of a sphere of

radius 50 µm is computed. Its semi-major and semi-minor axis are 79.37 µm and

39.69 µm respectively. The beam waist of the incident Gaussian beam of wavelength

0.785 µm is set to w0 = 50 µm. The incident angle is 15◦ relative to the symmetrical

axis of the particle. For this calculation, the whole surface of the prolate spheroid

is discretized into 12 million triangle patches with total 34 million unknowns. The

computed stress profile is shown in Fig. 4.18. This calculation takes about 250 GB

memory and 22 hour CPU time with 50 MPI processes and 2 threads for each process.

4.3 Conclusions

In this Chapter, optical stress on the surface of homogeneous particles is computed

and analyzed by using the MLFMA enhanced SIE method. This numerical method

is of high accuracy and great capability for large and arbitrary shaped homogeneous
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Figure 4.18: Stress profile on the surface of a prolate spheroid (m = 1.33) with aspect
ratio c/a = 2. The prolate spheroid has the same volume as a sphere of radius 50 µm.
The wavelength of the incident beam is 0.785 µm and its beam waist w0 = 50 µm.

particles. In the special case of homogeneous sphere illuminated by a Gaussian beam,

its results are in good agreement with the generalized Lorentz-Mie theory (GLMT)

in [152]. The stress profiles on surface of prolate and oblate spheroids with different

aspect ratios are presented. The influences of the aspect ratio as well as the beam

waist size and the incident condition are analyzed. Our recently developed ray tracing

model is employed to give a physical interpreting of the characteristics of stress and

also permit to check the results. We found that the characteristics of stress on prolate

spheroids are mainly determined by the rays of low order (p = 0, 1), but sometime the

higher (p ≥ 2) may play an important role at certain points on the surface depending

on both the shape of the particle and the beam as well as their relative position.

The stress on surface of a biconcave cell-like particle is also studied, showing that

this method can be applied to soft particles of arbitrary shape. Our algorithm can

go even far in the size of the particle, for a prolate spheroid of size parameter equal

to 640 (volume-equivalent size parameter 400) for instance. Although, we have only

presented the surface stress in certain observation planes, the stress at any point of the

particle surface is available. The presentation of the stress profiles in 3D is feasible.



Chapter 5

Conclusions and Perspectives

This PhD thesis is devoted to fast computation and analysis of light interactions of

large non-spherical particles, with the Vectorial Complex Ray Model (VCRM) and

the MultiLevel Fast Multipole Algorithm (MLFMA) enhanced combined tangential

formulation (CTF) of the surface integral equation (SIE) method. The incident wave

can be a plane wave or arbitrary shaped beam. In this chapter we draw the conclusions

of presented work and give perspectives for further studies.

5.1 Conclusions

In various research domains such as the environmental control, the fluid mechanics,

the combustion, the micro fluidics and telecommunication, the light scattering theories

play an important role. Computation of the scattering properties of particles of very

simple shapes, such as sphere and infinite circular cylinder, are well mastered and

excessively applied in many fields. But, the shapes of the particles encountered in

nature, in industry and in laboratories are often irregular and of complex shape, and

their sizes are often larger compared to the wavelength of incident light waves.

Various theoretical and numerical methods have been developed for non-spherical

particle, such as spheroid, ellipsoid, or elliptical cylinder to take into account the

shape of the particles. However, the sizes of the particles or shapes of the particles

are often limited because of the numerical difficulty.

The Vectorial Complex Ray Model (VCRM) recently developed by Ren et al.

permits to deal with the scattering of large irregularly shaped particles. In VCRM, a

103
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wavefront curvature is introduced as an new intrinsic properties of the rays to describe

the divergence/convergnece of the wave. By doing so, the phase shift due to the focal

line can also be counted easily. VCRM is proved to achieve good agreement with the

rigorous LMT theories. Recently, it is further applied for solving scattering by plane

wave or Gaussian beams incident on large ellipsoids and infinite elliptical cylinders.

But its results for large non-spherical are to be validated and its precision is to be

evaluated.

The full wave numerical method named the combined tangential formulation (CT-

F) of the surface integral equation method (SIE) was therefore chosen to compute the

scattering properties of large non-spherical particles for its high accuracy and high

performance. To reduce its computation resource requirement and to strength its

capability, the multilevel fast multipole algorithm (MLFMA) is employed to speed up

matrix vector multiplication in iterative solution steps of the final matrix equation

system. This CTF with MLFMA is efficiently paralleled on a distributed memory

super computer platform with hybrid MPI-OpenMP parallelization approach. With

this improvement, the calculable size parameter of the particle can be more than 600.

After a brief recall of the fundamental models and concepts in light scattering, the

general principles of the VRCM and CTF with MLFMA are presented. By comparing

the scattering diagrams of a large sphere with rigorous theory, we have shown that the

precision of both VCRM and MLFMA is very good for sphere with radius of several

tens of wavelengths. Since we have no rigorous result as a benchmark for the scattering

of large elliptical particles, the scattered intensities have also been compared to the

results of the code ADDA to validate our MLFMA code. The scattering diagrams

as function of the incident angle and the aspect ratios of the ellipsoids have also

been studied with MLFMA and VCRM. Numerical results proved that VCRM can

predict with precision the light scattering of a sphere, prolate or oblate spheroids and

ellipsoids of size as small as some tens of wavelengths. The effects of size parameter

and aspect ratios of the ellipsoid particles and the influences of incident angles for a

Chebychev dust particle have also been examined. The calculation for a Chebychev

particle of size parameter up to 628 demonstrates the great capacity of CTF with

MLFMA.

Then CTF with MLFMA is used for the calculation study of the radiation pres-

sure force (RPF) and torque exerted by a shaped light beam on arbitrary shaped

homogenous particles. Usually, In the classical numerical methods, the RPF and

torque are often computed by vector flux of the Maxwell’s stress tensor/pseudotensor
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over a surface enclosing the particle. To be convenient, this surface is chosen to be far

away from the particle so that asymptotic forms of special functions can be applied.

However, for a shaped beam, such as Gaussian beam, it is hard or even impossible to

get the mathematical description of the electromagnetic fields which satisfy rigorously

the Maxwell’s equations in all space. Here we use a spherical surface tightly enclosing

the particle to avoid inaccuracy caused by description of the incident electromagnetic

fields. Since any point on this spherical surface locates in near field region, the an-

alytical electromagnetic field expression can be used. We choose Gaussian beam as

an example and give in detail the frame of using CTF with MLFMA for computing

RPF/Toqure on arbitrary shaped particles. Other shaped beams can be done in the

same way without any difficulties. Numerical results on spherical and small spheroidal

particle are compared with the Generalized Lorenz-Mie theory (GLMT) and good a-

greements are observed. The RPF and torque on a relatively large spheroid and a

complex shaped biconcave red blood cell are also computed. We observed a negative

pulling force when the incident wavelength is set to 0.5145µm while a normal pushing

force when it is set to 1.0640µm

Prediction of the stress on the surface of an arbitrarily shaped particle of soft

material is essential in the study of elastic properties of the particles with optical

force. It is also necessary in the manipulation and sorting of small particles with

optical tweezers, since a regular shape particles, such as sphere, may be deformed

under the non-uniform optical stress on its surface. The stress profile on a spherical

or small spheroidal particle trapped by shaped beams has been reported. But little

work on the computation of the surface stress of an irregular large non-spherical

particle has been reported. We apply the CTF with MLFMA to compute the surface

stress on homogeneous arbitrarily shaped particles. The comparison of the computed

stress profile with that predicted by the generalized Lorenz-Mie theory (GLMT) for a

water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show

that the precision of our method is in very good agreement. Then the stress profiles

on spheroids with different aspect ratios are computed. The particles are illuminated

by Gaussian beam of different waist radii at different incidences. Physical analysis on

mechanism of optical stress is given with help of VCRM. We found the maximum of

stress profile on the surface of prolate spheroids is not only determined by the reflected

and refracted rays (orders p = 0, 1) but also the rays undergone one or two internal

reflection where they focus. Computational study of stress on surface of a biconcave

cell-like particle, which is a typical application in life science, is also undertaken.
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5.2 Perspectives

The two initial objectives of this thesis have been achieved: numerical validation of

VCRM by comparing the scattering diagrams computed by MLFMA and application

of the new developed MLFMA algorithm to the computation of the radiation force,

torque and stress exerted by a laser beam on a large non-spherical particle. Some

tools developed in this thesis can be used directly for other applications and some are

to be improved or extended to larger domains. As the work directly related to this

thesis, the following points are to be developed.

Amount of numerical results on the scattering of large non-spherical particles

are provided in the thesis: scattering diagrams, scattering matrix, radiation pressure

forces, torques and stress. These results are useful in the optical metrology, the

particle manipulation and the study of the dynamics of non-spherical in laser beams.

The developed code can also be applied to calculated those physical quantities with

other parameters. All these numerical results are to be validated by experiment.

By taking into account correctly the wave curvature, VCRM can be applied to

predict all the scattering properties of large particles with smooth surface and arbi-

trary shape. But so far it is only applied to the 2D scattering (scattering in a plane

of symmetry) of ellipsoidal particles and elliptical infinite cylinders. The extension of

VCRM to 3D scattering of particles such as spheroid and infinite elliptical cylinder

should be direct and remain to do. This will permit to enlarge very much the appli-

cation domain of the model, since this is a necessary step for the calculation of the

radiation pressure force, torque and stress exerted by a laser beam on a particle, as

well as its scattering, absorption and extinction coefficients. The wave front being a

intrinsic property in VCRM, it is also direct to include the shape of incident beam

in VCRM. Once the 3D code of VCRM is available, the extension to other shaped

particles will be simple. To improve further the accuracy of VCRM the diffraction

effect is to be considered near the singularity regions (in the rainbow angles, the critic

angles and the forward directions).

The code of MLFMA developed in the thesis is directly applicable to homogeneous

particles of any shape and any shaped light beams, so it can be used directly to validate

the calculation of the scattering in 3D of VCRM, and to compute the scattering

properties (scattering matrix, cross sections, RPF, torque and tress etc.) of other

non-spherical particle and/or illuminated by other shaped beams, i.e. the Bessel

beam and higher order Hermite-Gaussian beam. This work is very straightforward
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and can be easily done, since the framework has been already drawn.

The SIE with MLFMA is proved very powerful, but the code developed and the

computations in the manuscript concern only homogeneous isotropic particles. How-

ever, in practice, we also need to solve light interaction with inhomogeneous and/or

anisotropic particles. The SIE with MLFMA is not suitable for such problems. To

study radiation pressure force on such kind of particles, another MLFMA based nu-

merical method named the hybrid finite element-boundary integral-multilevel fast

multipole algorithm (FE-BI-MLFMA) can be employed. In FE-BI-MLFMA, the fi-

nite element method (FEM) is used to model complex and inhomogeneous properties

of the particle. Then the boundary integral equation method (BIE) is used as a trun-

cation of the FEM region. Hence it is general, efficient and accurate, and can be

applied to arbitrary shaped, anisotropy and inhomogeneous particles. Like the DDA

and FDTD, the calculable size of the particle by this method is small. To strength

its capability, we have presented an efficient parallel domain-decomposition based al-

gorithm of hybrid FE-BI-MLFMA method (DDM-FE-BI-MLFMA) [157]. In future,

this DDM-FE-BI-MLFMA can be applied for computing RPF and torque on large

inhomogeneous particles.
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[10] F. Onofri, G. Gréhan, and G. Gouesbet. Electromagnetic scattering from a

multilayered sphere located in an arbitrary beam. Appl. Opt., 34(30):7113–

7124, 1995.

[11] Y. P. Han and Z. S. Wu. Scattering of a spheroidal particle illuminated by a

gaussian beam. Appl. Opt., 40(15):2501–2509, 2001.

[12] F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan. Theoretical prediction
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[73] H. Polaert, G. Gréhan, and G. Gouesbet. Forces and torques exerted on a

multilayered spherical particle by a focused Gaussian beam. Opt. Commun.,

155(1-3):169–179, 1998.

[74] V. V. Kotlyar and A. G. Nalimov. Analytical expression for radiation forces on

a dielectric cylinder illuminated by a cylindrical Gaussian beam. Opt. Express,

14(13):6316–6321, 2006.

[75] F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea. Radiation torque exerted on a

spheroid: Analytical solution. Phys. Rev. A, 78(1):013843, 2008.

[76] A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in

the ray optics regime. Biophys. J., 61(2):569–582, 1992.



116 Bibliography

[77] C. B. Chang, W. X. Huang, K. H. Lee, and H. J. Sung. Optical levitation

of a non-spherical particle in a loosely focused gaussian beam. Opt. Express,

20(21):24068–24084, 2012.

[78] B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny. Radiation pressure

makes ellipsoidal particles tumble. Europhys. Lett., 100(4):48005, 2012.

[79] T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop.

Numerical modelling of optical trapping. Comput. Phys. Commun., 142(1):468–

471, 2001.

[80] T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg. Calculation

and optical measurement of laser trapping forces on non-spherical particles. J.

Quant. Spectrosc. Radiat. Transf., 70(4):627–637, 2001.

[81] T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg. Multipole

expansion of strongly focussed laser beams. J. Quant. Spectrosc. Radiat. Transf.,

79:1005–1017, 2003.

[82] S. H. Simpson and S. Hanna. Numerical calculation of interparticle forces rising

in association with holographic assembly. J. Opt. Soc. Am. A, 23(6):1419–1431,

2006.

[83] S. H. Simpson and S. Hanna. Optical trapping of spheroidal particles in Gaussian

beams. J. Opt. Soc. Am. A, 24(2):430–443, 2007.

[84] S. H. Simpson and S. Hanna. Rotation of absorbing spheres in LaguerrecGaus-

sian beams. J. Opt. Soc. Am. A, 26(1):173–183, 2009.

[85] F. Borghese, P. Denti, R. Saija, and M. A. Iati. Optical trapping of nonspherical

particles in the T -matrix formalism. Opt. Express, 15(19):11984–11998, 2007.

[86] B. T. Draine. The discrete-dipole approximation and its application to inter-

stellar graphite grains. Astrophys. J., 333:848–872, 1988.

[87] B. T. Draine and J. C. Weingartner. Radiative torques on interstellar grains I.

superthermal spin-up. Astrophys. J., 470:551, 1996.

[88] B. T. Draine and J. C. Weingartner. Radiative torques on interstellar grains II.

grain alignment. Astrophys. J., 480(2):633, 1997.



Bibliography 117

[89] J. C. Weingartner and B. T. Draine. Radiative torques on interstellar grains

III. dynamics with thermal relaxation. Astrophys. J., 589(1):289, 2003.

[90] H. Kimura and I. Mann. Radiation pressure cross section for fluffy aggregates.

J. Quant. Spectrosc. Radiat. Transf., 60(3):425–438, 1998.

[91] A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot. Radiation

forces in the discrete-dipole approximation. J. Opt. Soc. Am. A, 18(8):1944–

1953, 2001.

[92] D. Bonessi, K. Bonin, and T. Walker. Optical forces on particles of arbitrary

shape and size. J. Opt. A: Pure Appl. Opt., 9(8):S228, 2007.

[93] P. C. Chaumet and C. Billaudeau. Coupled dipole method to compute optical

torque: Application to a micropropeller. J. Appl. Phys., 101(2):023106, 2007.

[94] S. H. Simpson and S. Hanna. Holographic optical trapping of microrods and

nanowires. J. Opt. Soc. Am. A, 27(6):1255–1264, 2010.

[95] S. H. Simpson and S. Hanna. Optical trapping of microrods: variation with size

and refractive index. J. Opt. Soc. Am. A, 28(5):850–858, 2011.

[96] S. H. Simpson and S. Hanna. Application of the discrete dipole approximation to

optical trapping calculations of inhomogeneous and anisotropic particles. Opt.

Express, 19(17):16526–16541, 2011.

[97] W. L. Collett, C. A. Ventrice, and S. M. Mahajan. Electromagnetic wave tech-

nique to determine radiation torque on micromachines driven by light. Appl.

Phys. Lett., 82(16):2730–2732, 2003.

[98] D. W. Zhang, X. Yuan, S. Tjin, and S. Krishnan. Rigorous time domain simu-

lation of momentum transfer between light and microscopic particles in optical

trapping. Opt. Express, 12(10):2220–2230, 2004.

[99] M. Mansuripur A. Zakharian and J. Moloney. Radiation pressure on a dielectric

wedge. Opt. Express, 13(6):2064–2074, 2005.

[100] R. C. Gauthier. Computation of the optical trapping force using an FDTD

based technique. Opt. Express, 13(10):3707–3718, 2005.



118 Bibliography

[101] Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan. Tapered fiber optical tweezers

for microscopic particle trapping: fabrication and application. Opt. Express,

14(25):12510–12516, 2006.

[102] D. A. White. Numerical modeling of optical gradient traps using the vector

finite element method. J. Comput. Phys., 159(1):13–37, 2000.

[103] A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti,

M. A. Iat, R. Cingolani, O. M. Marag, and D. Pisignano. Rotational dynamics

of optically trapped nanofibers. Opt. Express, 18(2):822–830, 2010.

[104] A. van der Horst, An. I. Campbell, L. K. van Vugt, D. A. Vanmaekelbergh,

M. Dogterom, and A. van Blaaderen. Manipulating metal-oxide nanowires using

counter-propagating optical line tweezers. Opt. Express, 15(18):11629–11639,

2007.

[105] J. N. Wilking and T. G. Mason. Multiple trapped states and angular kramers

hopping of complex dielectric shapes in a simple optical trap. Europhys. Lett.,

81(5):58005, 2008.

[106] Z. D. Cheng, T. G. Mason, and P. M. Chaikin. Periodic oscillation of a colloidal

disk near a wall in an optical trap. Phys. Rev. E, 68(5):051404, 2003.

[107] E. A. Hovenac and J. A. Lock. Assessing the contributions of surface waves and

complex rays to far-field Mie scattering by use of the Debye series. J. Opt. Soc.

Am. A, 9(5):781–795, 1992.

[108] X. Han, K. F. Ren, L. Mees, G. Gouesbet, and G. Gréhan. Surface
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Résumé

Cette thèse est dédiée à la validation du modèle de Tracé de Rayons Vectoriels Com-

plexes (VCRM - Vectorial Complex Ray Model en anglais) par la comparaison des

diagrammes de diffusion avec les résultats de SIE- MLFMA (Surface Integral Equation

with Multilevel Fast Multipole Algorithm en anglais) et les applications de MLFMA

développé à la prédiction de la force de pression de radiation, le couple et la tension

exercés sur des grosses particules non-sphériques par un faisceau laser.

En introduisant la courbure du front d’onde comme une nouvelle propriété des

rayons lumineux, VCRM apporte une amélioration considérable sur la précision et

l’applicabilité du modèle de rayons pour la diffusion de la lumière par les particules

non-sphériques. Cependant ses résultats pour les particules non-sphériques restent

à valider. Alors, MLFMA est une méthode numérique très efficace pour traiter

l’interaction de la lumière avec des particules de forme quelconque. Afin d’étendre

sa capacité pour les grosses particules, dans cette thèse, MLFMA est améliorée et

parallélisée. Le code mis au point permet d’obtenir des résultats exacts pour les par-

ticules de paramètre de taille supérieur à 600. Le bon accord entre les diagrammes de

diffusion des grosses particules ellipsöıdales calculés par MLFMA et VCRM illustre la

grande capacité de ces deux méthodes.

Ensuite, le code MLFMA développé est appliqué au calcul de la force de pression de

radiation (FPR) et le couple sur des particules homogènes de forme quelconque. Pour

éviter l’imprécision de la description mathématique en champ lointain de faisceau

laser, l’expression analytique de champs électromagnétiques dans la région proche

de la particule est utilisée. La FPR et le couple sont donc calculés par le flux du

vecteur du tenseur de Maxwell sur une surface sphérique incluant la particule. Cette

méthode est très puissante et flexible permettant de prédir la FPR et le couple exercés

par un faisceau de forme quelconque sur une grosse particule, comme des particules

sphéröıdales, des particules de forme de globule rouge ou moteur.

La FPR et le couple sont des effets mécaniques globaux d’un faisceau de lumière

exercés sur une particule. La tension sur la surface d’une particule peut être impor-

tante dans l’étude des propriétés élastiques de certaines particules. Le code MLFMA

développé est donc étendu au calcul de la tension de surface et VCRM a été appliqué

à l’analyse le mécanisme de la tension sur des particules sphéröıdales.

Mots clés: Diffusion de la lumière, particules non-sphériques, Pression de radiation,

couple, tension, VCRM, MLFMA



Abstract

This PhD thesis is devoted to the validation of the Vectorial Complex Ray Model

(VCRM) by comparison of the scattering diagrams with the results computed by the

Surface Integral Equation (SIE) with Multilevel Fast Multipole Algorithm (MLFMA)

and the application of the developed MLFMA to the prediction of the scattering

matrix, the radiation pressure force, torque and stress exerted on large non-spherical

particles by laser beams.

By introducing the wave front curvature as a new property of rays, VCRM im-

proves considerably the precision and the applicability of the ray model for the light

scattering by non-spherical particles. But its results for non-spherical particles re-

main to be validated. On the other hand, MLFMA is an efficient full wave numerical

method for computing light scattering by large particles of arbitrary shape. To en-

hance further its ability for large particles, in this thesis, MLFMA is improved and

parallelized with Message Passing Interface (MPI) on a memory distributed computer

system. The code developed permits to obtain accurate results for particles of size

parameter bigger than 600. The good agreement between the scattering diagrams of

large ellipsoidal particles computed by MLFMA and VCRM demonstrates the great

capability of both methods.

Then the developed MLFMA code is applied to the computation of the radiation

pressure force (RPF), torque on arbitrary shaped homogenous particles. To avoid

the imprecision of the mathematical description in far field of shaped beams, the

analytical expression of electromagnetic fields in near region is used instead. RPF

and torque are therefore computed by the vector flux of the Maxwell’s stress tensor

over a spherical surface tightly enclosing the particle. This method is very powerful

and flexible permitting to deal with the interaction between any shaped beams and

large non-spherical particles, such as spheroidal particles, cell like particles and motor

shaped particles.

RPF and torque are overall mechanical effect of a light beam on the particles. The

stress on the surface of a particle can be important in the study of elastic properties

of certain particles (of soft material for example). The developed MLFMA code is

hence extended to the computation of the surface stress. At this stage, VCRM has

been applied to give a physical analysis on mechanism of optical stress on spheroidal

particles. It is found that the maximum of stress on the surface of non-spherical

particles may be caused by high order rays.

KeyWord: light scattering, Vectorial Complex Ray Model, Multilevel Fast Multipole

Algorithm, non-spherical particle, Radiation pressure force, torque, stress


