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Résumé 
 
La théorie de Lorenz-Mie généralisée (TLMG) est dévelopée pour la description de la 

diffusion d’un faisceau incident quelconque par un sphéroïde homogène. Les 

expressions analytiques d’amplitude des champs diffusés, des sections efficaces de 

diffusion, d’absorption, et d’extinction, de pression de radiation sont obtenues et des 

calculs numériques sont presentés. Pour enlever la contraite de la TLMG dans les 

calculs numériques pour un sphéroïde de grande taille, l’optique géometrique 

classique est étendu au cas d’un faisceau gaussien diffusé par un sphéroïde. En ce qui 

concerne l’expérience, un système optique sur la base de l’extinction spectrale de la 

lumière est développé et appliqué à la mesure de vapeur humide dans une turbine à 

EDF. L’influence de la diffusion multiple sur le spectre d’extinction et celle de la 

diffusion des particules situés dans le bord de zone de la mesure sont analysées en 

utilisant le modèle de Monte Carlo. 

 
Mots clés : Diffusion de la lumière, Théorie de Lorenz-Mie, Sphéroïde, Optique 

géometrique, Pression de radiation, Extinction de la lumière, Métrologie optique, 

Vapeur humide  

 
Abstract 
 
The generalized Lorenz-Mie theory (GLMT) is developed to describe the interaction 

between an arbitrary shaped beam and a homogeneous spheroid. Analytical 

expressions of the amplitudes of the scattering fields, the scattering, absorption and 

extinction crosssections, and the radiation pressure are obtained. The numerical 

results are also presented. To overcome the drawback of the GLMT in numerical 

calculation for a large spheroid, the classical geometrical optics is extended to the 

case of Gaussian beam scattering by a spheroid. In experimental aspect, an optical 

system on the basis of the spectral light extinction method is developed and used for 

wet steam measurement in EDF. The influences of the scattering by the particles in 

the edge measurement zone and of the multiple scattering on the extinction spectrum 

are analyzed by using the Monte Carlo method.  

 

Key words : Light Scattering, Lorenz-Mie theory, Spheroid, Geometrical optics,  

Radiation pressure, Light extinction, Optical particle sizing, Wet steam 
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List of Symbols and Abbreviations 

Roman Symbols 

a : albedo factor; 

  semimajor axis length of the spheroid 

an : Mie coefficients; 

A : coefficient matrix; 

A m
n  : coefficients describing the scattered fields; 

b : semiminor axis length of the spheroid; 

bn : Mie coefficients; 

B m
n  : coefficients describing the scattered fields; 

Bw : boxcar of wavelength; 

c : size parameter of the spheroid; 

  weight coefficients multiplied with the B-splines; 

cm : light speed in the medium; 

C : constant equal to –3Z/2; 

C m
n  : coefficients describing the internal fields; 

C pw
n   plane wave term; 

Cabs : absorption crosssection; 

Cext : extinction crosssection; 

Csca : scattering crosssection; 

Cn : number concentration of particles; 

Cpr, x : radiation pressure crosssection in the x direction; 

Cpr, y : radiation pressure crosssection in the y direction; 

Cpr, z : radiation pressure crosssection in the z direction; 

Cv : volume concentration of particles; 

vC  : mean volume concentration; 

d : diameter of the spherical particle; 

d mn
r  : expansion coefficients of the spheroidal angular functions; 

D : diameter of the particle; 

D1 : diameter of the incident light bundle; 
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D2 : diameter of the detector; 

D3 : opening diameter of the diaphragm; 

D32 : Sauter mean diameter; 

D
50v  : volume mean diameter; 

D
50n  : number mean diameter; 

DG : divergence factor; 

D m
n  : coefficients describing the internal fields; 

D 32 : mean inversed Sauter mean diameters; 

∆D : length of diameter interval; 

D  : characteristic diameter of the Rosin-Rammler distribution; 

E : extinction spectrum (ratio); 

∆E : deviation of the extinction; 

E : electric field; 

f : semifocal length of the spheroid; 

  focal length of the lens; 

fmn : beam shape coefficients of plane wave; 

gmn : beam shape coefficients of plane wave; 

F : objective function for optimization; 

Fx : x component of the propagation direction of a Gaussian ray; 

Fy : y component of the propagation direction of a Gaussian ray; 

Fz : z component of the propagation direction of a Gaussian ray; 
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g ,
m
n TE  : spherical beam shape coefficients; 

g ,
m
n TM  : spherical beam shape coefficients; 

G ,
m
n TE  : spheroidal beam shape coefficients; 

G ,
m
n TM  : spheroidal beam shape coefficients; 

H : smoothing matrix; 

H : magnetic field; 

i : unit vector in x direction; 

I : transmitted intensity; 
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 : identity matrix; 

I0 : incidence intensity; 

IM : intensity detected from channel Master; 

IS : intensity detected from channel Slave; 

Itrans. : transmitted intensity; 

∆Idiff. : diffused intensity; 

I  : mean intensity; 

j : unit vector in y direction; 

k : wavenumber; 

J '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

  order of the B-spline; 

  order of the matrix; 

K : distribution factor of the Rosin-Rammler distribution; 

K '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

k : unit vectors in z direction; 

k0 : wavenumber in free space; 

L : distance from the diaphragm to the detector; 

Lp : path of a ray undergoing p–1 internal reflections inside the particle; 

L '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

mf : mass of the liquid phase of water; 

mg : mass of the vapor phase of water; 

mmn : spherical vector wave functions; 

m̂  : relative refractive index of the particle; 

mr : real part of the relative refractive index; 

mi : imaginary part of the relative refractive index; 

Im̂  : refractive index of the medium; 

IIm̂  : refractive index of the particle; 

M '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

Mmn : Spheroidal vector wave functions; 

n(D) : normalized number frequency distribution; 

N : number of the particles; 
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  number of modals of particle size distribution; 

Nmn : normalization factor of mn
rd ; 

Nw : Number of wavelength; 

N(D) : number frequency distribution; 

n : unit vector outward normal; 
nmn : spherical vector wave functions; 

Nmn : spheroidal vector wave functions; 

Nj, k : B-spline of order k with bearing interval [Dj, Dj+k]; 

O '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

OP : particle’s center; 

OB : beam’s center; 

OP-xyz : Cartesian coordinate system of the particle; 

OB-uvw : Cartesian coordinate system of the beam; 

OP-u’v’w’ : Cartesian coordinate system of the beam with origin moved to OP; 

p : order of a ray; 

P '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

PHG : Henyey-Greenstein phase function; 

P m
n  : associated Legendre functions of the first kind; 

q1, q2 : random number; 

Q '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

Qext : extinction efficiency; 

Qsca : scattering efficiency; 

r : radius of the spherical particle; 

  projection radius of a sphere/spheroid along the z axis; 

  polar spherical coordinate; 

r1, r2 : Fresnel reflection coefficients; 

R : curvature radius of the wavefront; 

R '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

RQ : coefficient of the extinction ratio; 

Rs : distance from the observation point to the particle center; 

Rmn : spheroidal radial functions of order m and degree n; 
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S : a spherical surface; 

S '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

Sd : amplitude of the diffracted ray; 

Sj : amplitude function; 

Smn : spheroidal angular functions of order m and degree n; 

SG : initial amplitude of a Gaussian ray reaching the surface of the particle; 

Sn : Sample number for averaging; 

T : transmission spectrum (ratio); 

T0 : initial transmittance ratio; 

T '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

TI : integration time of acquisition; 

∆T : time interval of acquisition; 

U : objective function of in Generalized Cross-Validation method; 

U '
p
nn   factor in analytical expressions of radiation pressure crosssection; 

v0 : volume of the emulsion or suspension; 

vm : volume of protein molecules in the milk; 

v(D) : normalized volume frequency distribution; 

V(D) : volume frequency distribution; 

V '
p
nn  : factor in analytical expressions of radiation pressure crosssection; 

Va(D) : volume accumulation distribution; 

w : local waist radius of the circular Gaussian beam; 

W : E/C; 

w0 : waist radius of the circular Gaussian beam; 

w0u : waist radius of the elliptical Gaussian beam along the x axis; 

w0v : waist radius of the elliptical Gaussian beam along the y axis; 

wu : location of the beam waists along the u axis; 

wv : location of the beam waists along the v axis; 

(x0, y0, z0) : coordinates of the beam center OB in the particle’s coordinates OP-xyz; 

YT : theoretical wetness; 

YM : measured wetness; 

zn : nth-order Hankel function of the first kind; 
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 : nth-order Bessel function of the first kind; 

zR : Rayleigh length; 

Z : length of the measurement zone. 

 

Greek Symbols 

α : dimensionless size parameter of the spherical particle; 

β : 
angle between the z axis and the propagating direction of a Gaussian 

ray; 

γ : Lagrange factor; 

δr : relative deviation; 

δa : absolute deviation; 

ε1, ε2 : amplitude attenuation factors; 

η : polar spheroidal coordinate; 

θ : scattering angle; 

  polar spherical coordinate; 

Θbd : incidence angle of the beam; 

Θpl : incidence angle of the plane wave; 

θi : incidence angle of a ray; 

θr : refraction angle; 

θp : scattering angle for a ray of order p; 

pθ ′  : deviation angle for a ray of order p; 

θrg : position of geometric rainbow of primary order for a spheroid; 

∆θrg : 
deviation of the primary geometrical rainbow from a sphere for a 

spheroid; 

θrg, o : position of geometric rainbow of primary order for a sphere; 

θc : critical angle; 

θ1/2 : half collection angle of the detector; 

∆θ1 : solid angle; 

∆θ2 : solid angle; 

κ : aspect ratio; 

λ : wavelength; 
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λ0 : wavelength in the vacuum; 

λmn : eigenvalues of the differential equation with respect to Rmn and Smn; 

µ0 : permeability of free space; 

ξ : polar spheroidal coordinate; 

 : optical thickness; 

ξp : attenuation factor due to the optical path; 

π m
n  : generalized Legendre functions; 

ρr : density ratio of the two phases of the water; 

ρg : density of the vapor phase of the water; 

ρf : density of the liquid phase of water; 

σ : mean standard deviation of the average intensity; 

σi : standard deviation of the intensity with respect to each wavelength; 

σr : relative mean standard deviation of the average intensity; 

σλ : 
mean standard deviation of the intensity with respect to the 

wavelength; 

σλ, r : 
relative mean standard deviation of the intensity with respect to the 

wavelength; 

τ : turbidity; 

  
angle formed by the z axis and the line from particle center to the 

intersection point of Gaussian ray and the surface of the particle; 

τrg, o : 
incidence angle corresponding to the geometrical rainbow angle for a 

sphere; 

τ'rg, o : 
refraction angle corresponding to the geometrical rainbow angle for a 

sphere; 

τ m
n  : generalized Legendre functions; 

φ  : polar spherical or spheroidal coordinate; 

Фbd : polarization angle of the beam; 

Ф : light flux; 

pφ  : combined phase shift; 

iφ  : phase of the Gaussian beam; 

,p plφ  : combined phase shift for plane wave; 
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,p PHφ  : phase shift due to the optical path; 

,p FLφ  : phase shift due to the focal lines; 

, ,p T jφ∆  : additional phase shifts brought in by total reflection; 

ψmn : scalar eigenfunctions to the scalar wave equation; 

ω : circular frequency of light; 

∆Ω1 : solid angle; 

∆Ω2 : solid angle. 

 

Subscripts or superscripts 

emn : even item; 

i : incident; 

j : perpendicular (j=1) and parallel (j=2) components; 

  jth kind; 

I : region outside the particle; 

II : region inside the particle; 

min : minimum; 

max : maximum; 

o : sphere; 

s : scattered; 

t : internal; 

T : transformation of matrix; 

x, y, and z : components in x, y, and z direction; 

ξ, η, andφ  : components in ξ, η, and φ  direction; 

omn : odd item; 

’ : first derivative; 

* : complex conjugate. 

 

Mathematical operators 

Im : imaginary part; 
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min : minimization; 

Re : real part; 
2∇  : Laplace operator; 

T : transformation of matrix; 

Tr  trace of a matrix; 

’ : first derivative; 

* : complex conjugate; 

|…| : norm of a matrix. 

 

Abbreviations 

CCD : charged-coupled device; 

GCV : Generalized Cross-Validation; 

GLMT : generalized Lorenz-Mie theory; 

GO : geometrical optics; 

MSD  mean standard deviation; 

NFD : number frequency distribution; 

NNLS : non-negative least square; 

ORT : optimized regularization technique; 

PSD : particle size distribution; 

RPCS : radiation pressure crosssection; 

RPF : radiation pressure force; 

R-R : Rosin-Rammler; 

SD  standard deviation; 

SLEM : spectral light extinction method; 

SMD : Sauter mean diameter; 

VFD : volume frequency distribution. 
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General Introduction 

Light scattering theory and its application in particle and particle system characterization have 

been the interests of many researchers in the past several decades. Since the rigorous theory, 

Lorenz-Mie theory, was developed in the beginning of the last century, a solid theoretical basis 

has been laid down for many optical instruments, which are characterized by rapid, accurate, 

and non-intrusive measurement.  

Although the sphere finds most applications in the particle shape modeling in many occasions of 

optical measurements, more particles existing in nature or generated in industrial processes are 

non-spherical. As a first order extension of the sphere, the spheroid is considered to model some 

of them. However, the extension of the light scattering theory from sphere to spheroid is not a 

straightforward step. More difficult is the further extension from plane wave incidence to shaped 

beam incidence, which is the objective of the current thesis aiming at establishing a systematic 

theory for arbitrary shaped beam scattering by a spheroid. 

To overcome the drawback of rigorous theory in practical numerical calculation of the scattered 

fields for large spheroids, the classical geometrical optics is also developed by the author in the 

current thesis. By using the extended geometrical optics, the position of the primary order 

geometric rainbow for a spheroid of any aspect ratio κ can be predicted. Deviations of the 

primary order rainbow position predicted by Moebius formula, which is applicable only when 

the aspect ratio of the spheroid κ approach much to unity (typically, |κ–1|≤0.05), can be 

evaluated.   

As an important application occasion of the light scattering theory, wet steam measurement by 

using spectral light extinction method becomes the second part of the thesis. In large steam 

turbines used for electrical power production, the steam enters the low-pressure turbine 

cylinders as a dry superheated steam but exhausts to the condenser as a two-phase mixture of 

saturated steam and small liquid droplets. The occurrence of condensation phenomena in wet 

steam two-phase flow caused by the droplets degrades the efficiency of the turbine and makes 

corrosion damage to the turbine blades. In geothermal power plants and nuclear power plants, its 

harm to the economic characteristics and the security of steam turbine units is especially 
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remarkable due to the existence of the saturated steam. Therefore, it is greatly significant to 

investigate the behavior of wet steam two-phase flow in steam turbines. In the thesis, an online 

particle size distribution and wetness measurement system is developed on the basis of the 

spectral light extinction method and it is successfully applied in experiments.   

The thesis is organized as follows, theoretical development of two independent theories, 

generalized Lorenz-Mie theory and geometrical optics, for the description of shaped beam 

scattering by a spheroid, is presented in part I (Chapters 1~3). Development of an optical system 

designed on the basis of spectral light extinction method and its application in wet steam 

measurement, are presented in Part II (Chapters 4~8). And a conclusion of the thesis is given in 

Chapter 9. 
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Chapter 1. Introduction 

Numbers of optical phenomena in the nature, such as the rainbow, the glory, the sky blue and 

the evening glow have inspired our infinite poetic imagination. Some of them even become the 

belief to many ordinary people. Thanks to Rayleigh (1881), Mie (1908), Debye (1909), and 

other physicists’ efforts in the development of light scattering theory in the past two centuries, 

the mechanism of scattering gradually becomes clear to us.  

Thanks to our understanding of scattering, more and more non-intrusive optical instruments 

have been invented and developed for particle and particle system characterization. For 

examples, by using rainbow refractometry, the temperature and the composition of a single 

droplet or the droplet system can be known (Wilms et al., 2004; Wilms, 2005; Vetrano et al., 

2005); By measuring the morphology dependent resonances, droplet size, evaporation rate, 

surface tension, viscosity, as well as species concentration in a multicomponent droplet can be 

determined (Chen et al., 1996). Through exerting optical force, mechanical rigidity of a soft cell 

can be measured (Guck et al., 2000, 2001).  

To provide a theoretical basis for these optical methods of measurement, relevant scattering 

theories have been developed. Among all the theories established for light scattering description, 

rigorous theory and geometrical optics are two of the most widely applied methods in practical 

situations. In the current thesis, the main concern centers on the interaction between a single 

particle and the laser beam, which is the basis for various modern optical instruments developed 

for particle characterization, such as laser Dopper anemometry (Durst et al., 1981), dual-

cylindrical wave particle analyzer (Naqwi et al., 1990, 1992), laser imaging particle analyzer 

(Schaub et al., 1991), optical tweezer (Ashkin, 1970, 1980; Ashkin and Dziedzic, 1987, 1989; 

Ashkin et al., 1987), etc.  

The first part of the current thesis is contributed to the shaped beam scattering by a spheroid. We 

will give a discussion in the upcoming sections on the several aspects involved, including the 

shaped beam and the spheroid, and the theories developed for describing their interaction in 

history, including rigorous theory and geometrical optics. 
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1.1 Shaped beam 

The name of “laser beam” in the current thesis can be viewed as equivalent to “arbitrary shaped 

beam”. With the development of laser optics, more and more beams of different shapes and 

profiles have been applied to the optical instruments, e.g., the circular and elliptical Gaussian 

beams, high-order Hermite-Gaussian beams, Laguerre-Gaussian beam, etc. When we develop a 

theory for describing shaped beam scattering by a single particle, the expansion of the shaped 

beam in coordinates adapted to the particle is important. Among all the beams, the most 

commonly used one is the Gaussian beam working on the fundamental mode TEM00, whose 

description has been given by Davis (1979), Gouesbet and Gréhan (1988) and Barton and 

Alexander (1989). The description of high-order Hermite-Gaussian beam (TEMmn) can be 

derived by performing partial derivatives of the fundamental spatial mode TEM00 (Barton, 

1997). And the description of the Laguerre-Gaussian beams is not involved, since they can be 

expressed in terms of a summation of the Hermite-Gaussian beams (Siegman, 1971). Once the 

electric and magnetic fields in the coordinates of the particle are determined, the remaining task 

is straightforward: establishing the equations ensuring the continuity of the tangential 

components of the electric and magnetic vectors across the surface of the particle and then 

solving the equation set.  

1.2 Spheroid 

Light scattering by non-spherical particles has been the interests of many researchers in the past 

several decades. As one of the non-spherical particles, the spheroid provides first order 

appropriate model in many practical situations. For example, in atomization under high Weber 

numbers (typically We>100), the droplets acted by the aerodynamic drag forces are deformed 

into the oblate spheroidal shape during the period between the primary atomization and the 

secondary breakup (Hsiang and Faeth, 1992). By the action of inertial forces, falling droplets at 

low Reynolds number also possess the oblate spheroidal shape (Taylor and Acrivos, 1964). For 

some aerodynamic particle sizing instruments, the droplets suspended in an accelerated sample 

airstream are deformed from spherical to oblate spheroidal shape (Secker et al., 2000a, b; Secker 

et al. 2001). Brenn and Frohn’ experiment shows that free oscillation of fundamental mode (n=2) 

of the droplet in a gaseous medium cause its surface to approach the spheroidal shape (Brenn 
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and Frohn, 1993). The spheroid also provides a suitable model in some biological experiments. 

For example, under the action of the optical stretcher (Guck et al., 2000, 2001), which uses two 

counter-propagating laser beams to stretch a soft red blood cell by optical force, the cell is 

deformed to a shape approximate to the prolate spheroid in its initial and intermediary period of 

deformation.  

Since the spheroid can serve as the model for the studies of the deformed particles in many 

cases, its scattering characteristics should be theoretically known before its measurements and 

diagnoses by using various optical instruments, which is the motivation of the thesis. By using 

both rigorous theory and geometrical optics, the far-field scattering, the rainbow position, 

scattering and extinction coefficients, and the optical force will be studied for a spheroid, prolate 

or oblate, transparent or absorbing, illuminated by arbitrary shaped beam.  

1.3 Rigorous theory 

The rigorous theory of shaped beam scattering by a spheroid is developed from the theories of 

shaped beam scattering by a sphere and of plane wave scattering by a spheroid. To find the 

solution to Maxwell’s equation by using variable separation and boundary condition methods, it 

is primarily necessary to expand the shaped beam in the coordinates generated from the shape of 

the particle. To this aim, Kim and Lee (1983) used the complex-source-point method, Barton 

(1988) combined the particle’s geometry with the incident fields and introduced the surface 

integral method, while Gouesbet et al. (1988) developed the generalized Lorenz-Mie theory 

(GLMT), which employs a set of beam shape coefficients (BSCs) to describe the incident beam. 

GLMT has found the most conventional applications in laser particle characterization because of 

its clearer physical interpretation in beam description: the BSCs are independent of the 

geometry of the spherical particle.  

The rigorous theory for plane wave scattering by a homogeneous spheroid was first developed 

by Asano and Yamamoto (1975). By using the surface integral method, Barton (1995) first 

extended such a theory to the case of arbitrary beam incidence and studied the internal and near-

surface fields for a spheroid. Thereafter, theories for shaped beam scattering by a layered 

spheroid or a spheroid with an embedded source is developed accordingly (Barton, 2000, 2001). 
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Within the framework of the GLMT (Gouesbet et al., 1988), on-axis and off-axis Gaussian 

beam scattering by a spheroid has also been studied (Han and Wu, 2001; Han et al., 2003). But 

the propagation direction of the incident beam is assumed to be parallel to the symmetrical axis 

of the spheroid. 

This thesis contributes to the development of a systematic rigorous theory to describe the shaped 

beam scattering by a spheroid. Both the profile of the beam and its incident angle can be 

arbitrary. Analytical expressions of the scattering amplitudes, the scattering and extinction 

coefficients, and radiation pressure force are then yielded for a spheroid.  

1.4 Geometrical optics 

Although GLMT can serves as a rigorous theory in describing the interaction between the 

incident beam and spheroid, hardly can it be applied to the practical calculation for a 

homogeneous spheroid of projection radius larger than ~5 µm (r≥~5) or axis ratio larger than ~3 

(a/b≥~3). This is mainly due to the mathematical difficulties in numerical evaluation of radial 

spheroidal functions of the second kind for the spheroid of large size or axis ratio (Li et al., 

1998).  

In face of such a difficulty, the geometrical optics (GO) is expected to work instead of the 

rigorous theory. In GO approximation, the final scattering intensities are calculated from the 

superposition of the complex amplitudes of the diffracted rays, the externally reflected rays and 

the refracted rays experimenting finite internal reflections inside the particle (van de Hulst, 

1957). Due to its advantages of more straightforward physical interpretation of scattering 

phenomenon and much higher efficiency in numerical calculations, GO can be applied in the 

studies of non-spherical and large particle scattering when no rigorous theory exists or rigorous 

theory can hardly achieve. The unique requirement is that the particle should be at least ten 

times larger than the wavelength, which is just the incapability range of the rigorous theory. 

Many authors have contributed to the development of GO approximation to light scattering. 

Glantschnig and Chen (1980) have simplified the intensity calculation by superposing the 

amplitudes of the externally reflected rays and the directly transmitted rays into that of 

diffracted ray and thus obtained a formula to describe the scattering by a pure water droplet in 
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the forward angular range [0˚, 60˚]. Aiming at practical particle sizing, Kuster et al. (1991) 

derived a more compact formula by simply considering the contribution of the diffracted and 

direct transmitted rays. Ungut et al. (1981) made a detailed comparison of the GO 

approximation with Mie theory in forward scattering calculation. They found good agreement of 

the two theories can be achieved at the scattering angles within [0˚, 20˚] for a transparent 

spherical particle of size parameter greater than ~6. Xu et al. (2003, 2004a) extended GO to 

plane wave scattering by an absorbing homogeneous or a coated particle. Comparison with Mie 

and Aden-Kerker theory (Mie, 1908; Aden and Kerker, 1951) indicates that GO can be used for 

scattering calculation for both transparent and weakly absorbing particles in the near forward 

directions.  

However, all the aforementioned papers concern the plane wave scattering by a spherical 

particle. As to the shaped beam illumination, only Chevaillier et al. (1986, 1990) extended the 

Fraunhofer diffraction theory to describe Gaussian beam scattering by an opaque circular disk. 

But their method is only valid for scattering angles less than ~6˚. Moreover, the numerical 

method adopted for performing the diffraction integral has the requirement that the local beam 

waist radius w should be larger than the disk radius a. With respect to the particle, Hovenac et al. 

(1991) applied ray theory to study forward scattering of the plane wave by a spheroid, while 

Lock (1996a, b) gave a general formula for amplitude calculation of the specularly reflected and 

directly transmitted rays from a spheroid with arbitrary orientation. In rainbow studies, GO has 

also found practical applications, particularly in the studies of droplet and elliptical cylinder 

scattering (Walker, 1976; Fraster, 1993; Adler et al., 1998). However, because of the difficulties 

in divergence factor calculation and ray-tracing program design for a three-dimensional object, 

these methods can hardly handle the emergent rays experiencing more than one internal 

reflection inside the non-spherical particles. In this thesis, an extension of GO to describe 

Gaussian beam scattering by a spheroid will be given. The beam is assumed to have nose-on 

incidence on the spheroid so that the beam axis coincides with the rotationally axis of symmetry 

of the particle. In this case, calculations of the divergence factor, the phase shift, etc. for a three-

dimensional object can be simplified into the two-dimensional domain. In this case, prediction 

of the geometrical rainbow position is made for a spheroid of large axis ratio, which is the 

theoretical basis of rainbow thermometry. 
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1.5 Organization of Part I 

The first part of the present thesis is organized into 2 chapters: Chapter 2 is contributed to the 

development of the GLMT for shaped beam scattering by a spheroid. And Chapter 3 is 

contributed to the development of GO approximation of Gaussian beam scattering by a spheroid.  

Note should be paid to that most work stated in Chapters 2 and 3 has been published in the 

journal papers by the author (Xu et al. 2006a, b, 2007a-c). Nevertheless, to ensure the 

completeness and the coherence of the thesis, the work is reorganized for presentation. 
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Chapter 2.    Generalized Lorenz-Mie Theory for Shaped Beam 

Scattering by a Spheroid 

In this chapter, we develop the generalized Lorenz-Mie theory (GLMT) for shaped beam 

scattering by a spheroid. First, the general theory is presented and analytical expressions of the 

scattered fields, scattering, extinction and the radiation pressure crosssections are given. Then, 

our efforts are devoted to the expansion of the incident shaped beam of arbitrary orientation and 

location in terms of the vector spheroidal wave functions in a given spheroidal coordinates. 

Evaluation method of the beam shape coefficients (BSCs) in spheroidal coordinates is discussed 

and comparison of the reconstructed fields with the original ones is made. Finally, the 

demonstration calculations and numerical results from the current theory are presented. The 

plane wave, circular Gaussian beam, elliptical Gaussian beam are employed as the incident 

beams for calculations. 

2.1 Theory 

We consider a monochromatic, arbitrarily oriented shaped beam incident on a spheroid with 

semimajor and semiminor axes a and b, respectively ( Fig. 2.1). In its own Cartesian coordinate 

system OB-uvw, the beam is polarized in the u direction at the waist. The spheroid, prolate or 

oblate, is surrounded by a homogeneous, nonmagnetic and lossless medium. The time-

dependent part of the electromagnetic field is assumed to be exp( )i tω− . Outside and inside the 

particle, the electromagnetic fields must satisfy vector wave equations (or Helmholtz equations) 

as follows: 

 
2 2

2 2

0
0

k
k

⎧∇ + =⎪
⎨
∇ + =⎪⎩

E E
H H

, (2-1)

where 2 /k π λ=  is the wavenumber. Assuming that 0 02 /k π λ=  is the wavenumber of light in 

free space, we have wavenumbers I 0 Iˆk k m=  and II 0 IIˆk k m=  outside and inside of the spheroid 

respectively, and the refractive indices Im̂  and IIm̂  of the medium and of the spheroid, 
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respectively.  

 

Fig. 2.1 Coordinate systems: OB-uvw is attached to the incident shaped beam and OP-xyz is attached to the spheroid. 

Solutions of vector wave equation (2-1) can be found by applying the variable separation 

method (VSM) to the following scalar wave equation:  

 2 2 0kψ ψ∇ + = . (2-2)

The relationship between the scalar function ψ  and the spheroidal vector wave functions will be 

given in Subsection  2.1.1. 

2.1.1 Beam expansion in spheroidal coordinates 

By using the VSM, solutions to the scalar wave function denoted by Eq.(2-2) in the prolate 

spheroidal coordinates (ξ ,η ,φ ) are the scalar eigenfunctions expressed in the following form: 

 | | | |( , ) ( , ) exp( )mn m n m nS c R c imψ η ξ φ= , (2-3)

where the dimensionless parameter c is defined by c=kf, with f being the semifocal length of the 

spheroid. The spheroidal angular functions Smn(c, η) and the spheroidal radial functions Rmn(c, ξ), 

satisfy the following differential equations (Flammer, 1957): 

x 

v 

OB 

η=–cos(π/3) 

w 

u 

z y OP 

η=–cos(π/6) 

η=1 η=–1 

η=cos(π/3) 

ξ<ξ0 

ξ>ξ0 

ξ=ξ0 η=cos(π/6) 
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In Eq. (2-4) and Eq. (2-5), λmn is a separation constant. The discrete values of λmn (n=m, m+1, …) 

are the eigenvalues ensuring finite solution at η=±1 for the differential equations. Methods on 

the computation of λmn have been reviewed by Li et al. (1998). And the method used by us is 

proposed by Hodge (1970) and given in Appendix A. 

Attention should be paid to the fact that all the equations and expressions pertaining to the 

prolate spheroidal system can be converted to their counterparts in the oblate system through 

replacements of the parameters c and ξ by –ic and iξ, respectively. Therefore, in this chapter, we 

only present the formulation for a prolate spheroid for convenience. 

The spheroidal vector wave functions (Mmn, Nmn) (see Appendix B for their complete 

expressions), as solutions to the vector wave equation (2-1), are then generated by following 

vector operations on the scalar function ψmn: 

 ( )mn mnψ= ∇×M r . (2-6)

 
1

mn mnk
= ∇×N M . (2-7)

The incident fields can be expanded in terms of spheroidal vector wave functions ( ( )i
mnM , ( )i

mnN ) as 

follows: 

 ( ) 1 ( ) ( )
, I , I

, 0

( ; , , ) ( ; , , )i n m i m i
n TE mn n TM mn

m n m n
i iG c G cξ η φ ξ η φ

∞ ∞
+

=−∞ = ≠

⎡ ⎤= +⎣ ⎦∑ ∑E M N , (2-8)

 ( ) 1 ( ) ( )I
, I , I

, 00

( ; , , ) ( ; , , )i n m i m i
n TM mn n TE mn

m n m n

ik i G c iG cξ η φ ξ η φ
ωµ

∞ ∞
+

=−∞ = ≠

⎡ ⎤= − +⎣ ⎦∑ ∑H M N , (2-9)

where 0µ  is the permeability of free space and ,
m
n TEG  and ,

m
n TMG  are the BSCs in spheroidal 

coordinates, or more briefly, spheroidal BSCs. Their computation will be discussed in Section 

 2.2. 
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Likewise, the scattered fields (E(s), H(s)) are expressed in terms of the spheroidal vector wave 

functions ( ( )s
mnM , ( )s

mnN ) as follows: 

 ( ) 1 ( ) ( )
I I

, 0
( ; , , ) ( ; , , )s n m s m s

n mn n mn
m n m n

i B c A cξ η φ ξ η φ
∞ ∞

+

=−∞ = ≠

⎡ ⎤= +⎣ ⎦∑ ∑E M N , (2-10)

 ( ) 1 ( ) ( )I
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, 00

( ; , , ) ( ; , , )s n m s m s
n mn n mn

m n m n

ik i A c B cξ η φ ξ η φ
ωµ

∞ ∞
+

=−∞ = ≠

⎡ ⎤= − +⎣ ⎦∑ ∑H M N . (2-11)

And the internal fields (E(t), H(t)) read as  

 ( ) 1 ( ) ( )
II II

, 0

( ; , , ) ( ; , , )t n m t m t
n mn n mn

m n m n

i D c C cξ η φ ξ η φ
∞ ∞

+

=−∞ = ≠

⎡ ⎤= +⎣ ⎦∑ ∑E M N , (2-12)
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ik i C c D cξ η φ ξ η φ
ωµ

∞ ∞
+

=−∞ = ≠

⎡ ⎤= − +⎣ ⎦∑ ∑H M N . (2-13)

The spheroidal vector functions describing the incident and internal fields, ( ( )i
mnM , ( )i

mnN ) and 

( ( )t
mnM , ( )t

mnN ), are associated with (1)
mnR , the radial function of the first kind that is finite at the 

origin of the spheroidal coordinates ξ=0. The spheroidal vector functions for the scattered fields 

( ( )s
mnM , ( )s

mnN ) are associated with (3)
mnR , the radial function of the third kind ensuring that the 

scattered wave becomes a spherical diverging wave when the spheroidal radial coordinate ξ 

tends to infinity, as it should. 

The unknown coefficients m
nA , m

nB , m
nC , and m

nD describing the scattered and internal fields can 

be determined from the following boundary conditions ensuring the continuity of tangential 

components of electric and magnetic vectors across the surface of the spheroid 0ξ ξ= :  

 ( ) ( ) ( )i s tE E Eη η η+ = , (2-14)

 ( ) ( ) ( )i s tE E Eφ φ φ+ = , (2-15)

 ( ) ( ) ( )i s tH H Hη η η+ = , (2-16)

 ( ) ( ) ( )i s tH H Hφ φ φ+ = . (2-17)

We use the method proposed by Asano and Yamamoto (1975) to determine these coefficients. 

Namely, the η and φ  components of the spheroidal harmonics are multiplied by 
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⎨ ⎬
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spheroid. Afterward, the 

spheroidal angular functions mnS  are expanded in terms of the associated Legendre functions of 

the first kind (cos )m
nP θ . By virtue of the orthogonality of the m

nP ’s, a set of equations 

corresponding to Eqs. (2-14)-(2-17) can be obtained and solved to obtain the coefficients m
nA , 

m
nB , m

nC , and m
nD . This step is the similar as that for the case of plane wave incidence (Li et al., 

1998, 2001, 2002; Yong and Sebak, 2006). The only modification is the implantation of the 

negative mode of the spheroidal vector wave function into the equation group corresponding to 

the TM mode and the substitution of mn

mn

f
g

⎧ ⎫
⎨ ⎬
⎩ ⎭

 by ,

,

m
n TE

m
n TM

iG

G

⎧ ⎫−⎪ ⎪
⎨ ⎬
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 for positive m’s and by ,

,

m
n TE

m
n TM

iG

G

⎧ ⎫⎪ ⎪
⎨ ⎬
−⎪ ⎪⎩ ⎭

 for 

negative m’s. 

2.1.2 Far-field scattering 

When the spheroidal radial coordinate ξ tends to infinity (ξ→∞), the associated spheroidal 

surface becomes a spherical one. In this case, we have f rξ →  ( I Ic k rξ → ) and cosη θ→ . The 

ξ component of the spheroidal vector wave functions becomes negligible generating a transverse 

wave. And the η  and φ  components ( ( )s
mnM , ( )s

mnN ) have the following asymptotic behaviors: 
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φ
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+= − − . (2-21)

Substituting Eqs. (2-18)-(2-21) into Eqs.(2-10) and (2-11) yields the far-field electromagnetic 

components as follows:  
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 I( )
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1 ik rsE e S
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 ( ) ( )I

0

s skH Eη φωµ
= , (2-24)

 ( ) ( )I

0

s skH Eφ ηωµ
= − , (2-25)

where S1 and  S2 are the complex amplitude functions calculated by  
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2.1.3 Extinction and scattering crosssections 

For a particle of arbitrary shape, the scattering and extinction crosssections are defined as 

follows (Born and Wolf, 1999): 

 ( ){ }( ) ( )*

 
Re s s

scaC dS
∑

= × ⋅∫∫ E H n , (2-28)

 ( ){ }( ) ( )* ( ) ( )*

 
Re i s s i

extC dS
∑

= − × + × ⋅∫∫ E H E H n , (2-29)

where S may denote a spherical surface of a sphere with radius r, containing the particle and 

centered at a point inside the particle, n is the unit vector outward normal with respect to S, Re 

denotes the real part of the integral results and the asterisk denotes the complex conjugate. We 

take the center of the spheroid as the center of such a sphere. 

When the spheroidal radial coordinate ξ tends to infinity (ξ→∞), the spheroidal surface 

characterized by the spheroidal radial coordinate ξ becomes a spherical one (cξ tends to kr and η 

tends to cosθ) and the radial components of the spheroidal vector wave functions become zero. 

Using such a spherical surface to perform the integral of Eqs. (2-28) and (2-29), we have 
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Substituting into Eqs. (2-30) and (2-31) the asymptotic behaviors of ( ( )s
mnM , ( )s

mnN ) as indicated by 

Eqs. (2-18)-(2-21) and those of ( ( )i
mnM , ( )i

mnN ) as follows: 

 
I I

| | I( )
,

I I

( , cos )1 ( ) exp( )
2 sin

ik r ik r
m ni n n

mn

mS ce eM i i im
k r k rη

θ
φ

θ

−⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
, (2-32)

 
I I

| | I( ) 1 1
,

I I

( , cos )1 ( ) exp( )
2

ik r ik r
m ni n n

mn

dS ce eM i i im
k r k r dφ

θ
φ

θ

−
+ +⎡ ⎤

= − − +⎢ ⎥
⎣ ⎦

, (2-33)

 
I I

| | I( )
,

I I

( , cos )1 ( ) exp( )
2

ik r ik r
m ni n n

mn

dS ce eN i i im
k r k r dη

θ
φ

θ

−⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
, (2-34)

 
I I

| | I( ) 1 1
,

I I

( , cos )1 ( ) exp( )
2 sin

ik r ik r
m ni n n

mn

mS ce eN i i im
k r k rφ

θ
φ

θ

−
+ +⎡ ⎤

= − − +⎢ ⎥
⎣ ⎦

, (2-35)

and invoking orthogonality relations for the exponentials exp( )imφ and the generalized 

Legendre functions m
nτ  and m

nπ  as follows (Gouesbet et al., 1988):  

 [ ]
 2

' 0
exp ( ') 2 mmi m m d

π
φ φ πδ− =∫ , (2-36)

 ( ) 2
' ' ' 0

2 ( 1)( )!sin
(2 1)( )!

m m m m
n n n n nn

n n n mm d
n n m

π
τ τ π π θ θ δ+ +

+ =
+ −∫ , (2-37)

 ( ) 

' ' 0
sin 0m m m m

n n n n d
π
τ π τ π θ θ+ =∫ , (2-38)

where 

 (cos )m
m n
n

dP
d

θτ
θ

= , (2-39)

 (cos )
sin

m
m n
n

P θπ
θ

= , (2-40)

we can finally obtain the following analytical expressions of the scattering and extinction 

crosssections after some algebra: 
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 ( )
2

,* ,*
' ' '

| | 0 ' | | 0
Re p p p p p

sca nn n n n n
p n p n p

C A A B Bλ
π

+∞ +∞ +∞

=−∞ = ≠ = ≠

⎡ ⎤
= Π +⎢ ⎥

⎣ ⎦
∑ ∑ ∑ , (2-41)

 ( )
2

,* ,*
' ', ',

| | 0 ' | | 0
Re p p p p p

ext nn n n TM n n TE
p n p n p

C A G B Gλ
π

+∞ +∞ +∞

=−∞ = ≠ = ≠

⎡ ⎤
= Π +⎢ ⎥

⎣ ⎦
∑ ∑ ∑ , (2-42)

where 

 ( )( ) ( )' | | | | '

0,1

0,                                                                                | '|=odd
| | | | 1 2 | | !

,          | '|=even
2 2 | | 1 !

p
nn p n p n

r r
r

n n
r p r p r p

d d n n
r p r

∞

=

−⎧
⎪Π = + + + +⎨ ′ −⎪ + +⎩
∑

. (2-43)

2.1.4 Radiation pressure 

The radiation pressure force (RPF) exerted by the beam on the particle is proportional to the net 

momentum removed from the incident beam. If we use the radiation pressure crosssections 

(RPCS) Cpr, x, Cpr, y, and Cpr, z to characterize the transverse (along the x and y axes) and 

longitudinal (along the z axis) components of RPF respectively, they can be related to the 

integral of the absorption crosssection, Cabs, by (Gouesbet et al. 1988)  

 pr, m abssin cos  x xC c F Cθ φ= = , (2-44)

 pr, m abssin sin  y yC c F Cθ φ= = , (2-45)

 pr, z m abscos  zC c F Cθ= = , (2-46)

where mc  denotes the light speed in the surrounding medium and xF , yF  and zF  denote the 

three components of RPF along the x, y, and z axes respectively.  

Since the time-averaged Poynting vector S can be obtained from the incident and scattered 

electromagnetic fields outside the particle as follows (Bohren and Huffman, 1983):  

 ( )( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ),

8
i i s s i s s imc

π
= × + × + × + ×* * * *S E H E H E H E H , (2-47)

and the energy absorbed by the particle is negative to the integral result of the Poynting vector 

over a closed surface around the particle, we have the following integral for the absorption 

crosssection: 
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 ( ){ }( ) ( ), ( ) ( ), ( ) ( ),
abs  

Re s s i s s iC dS
∑

= − × + × + × ⋅∫∫ * * *E H E H E H n . (2-48)

Note that the integral result of the first term of the Poynting vector (Eq.(2-47)) over a closed 

surface of the particle is zero. 

When the spheroidal radial coordinate ξ tends to infinity (ξ→∞), the spheroidal surface 

characterized by the spheroidal radial coordinate ξ becomes a spherical one (cξ tends to kr and η 

tends to cosθ) and the radial components of the spheroidal vector wave functions become zero. 

Using such a spherical surface to perform the integral of Eq.(2-48), we have the following 

expression for Cabs:  

 ( )  2 ( ) ( ) ( ) ( )* ( ) ( ) ( ) ( )* ( ) ( )* ( ) ( )* 2

 0  0

1 Re sin
2

i s s i i s s i s s s s
absC E H E H E H E H E H E H r d d

π π

φ η φ η η φ η φ η φ φ η θ θ φ= + − − − +∫ ∫ .

  (2-49)

Substituting Eq.(2-49) into Eqs. (2-44)-(2-46) yields the following expressions of RPCS:  

 ( )  2 ( ) ( ) ( ) ( )* ( ) ( ) ( ) ( )* ( ) ( )* ( ) ( )* 2 2
pr,  0  0

1 Re sin cos
2

i s s i i s s i s s s s
xC E H E H E H E H E H E H r d d

π π

φ η φ η η φ η φ η φ φ η θ φ θ φ= + − − − +∫ ∫ , 

  (2-50)

 ( )  2 ( ) ( ) ( ) ( )* ( ) ( ) ( ) ( )* ( ) ( )* ( ) ( )* 2 2
pr,  0  0

1 Re sin sin
2

i s s i i s s i s s s s
yC E H E H E H E H E H E H r d d

π π

φ η φ η η φ η φ η φ φ η θ φ θ φ= + − − − +∫ ∫ , 

  (2-51)

 ( )  2 ( ) ( ) ( ) ( )* ( ) ( ) ( ) ( )* ( ) ( )* ( ) ( )* 2
pr,  0  0

1 Re sin cos
2

i s s i i s s i s s s s
zC E H E H E H E H E H E H r d d

π π

φ η φ η η φ η φ η φ φ η θ θ θ φ= + − − − +∫ ∫ . 

  (2-52)

Substituting Eqs. (2-18)-(2-21) and (2-32)-(2-35), which are the asymptotic behaviors of η  and 

φ  components of the spheroidal vector wave functions describing the scattering and incident 

waves, into Eqs.(2-8)-(2-11), using Eqs.(2-50)-(2-52), and invoking the orthogonality relations 

listed in Appendix C for the generalized angular functions I( , cos )
sin

mnS c θ
θ

, their derivatives 

I( , cos )mndS c
d

θ
θ

, as well as the exponentials exp( )imφ , we can obtain the following analytical 
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expressions of RPCS after a great deal of algebra:  

 
( ) ( ) ( ) ( )

2

,
1 1 0 '

1 1 1 1 1 1
' ' ' ' ' ' ' ' ' ' ' '

Re
4

2 2 2 2

pr x
p n p n p

p p p p p p p p p p p p
nn nn nn n n n n n n nn nn nn n n n n n n

C

L U S L U S iM V T iM V T

λ
π

+∞ +∞ +∞

= = − ≠ =

− − − − − − − − − − − −

=

⎤⎡ − + − + − + −⎣ ⎦

∑ ∑ ∑
, (2-53)

 
( ) ( ) ( ) ( )

2

,
1 1 0 '

1 1 1 1 1 1
' ' ' ' ' ' ' ' ' ' ' '

Im
4

2 2 2 2

pr y
p n p n p

p p p p p p p p p p p p
nn nn nn n n n n n n nn nn nn n n n n n n

C

L U S L U S iM V T iM V T

λ
π

+∞ +∞ +∞

= = − ≠ =

− − − − − − − − − − − −

=

⎤⎡ − + − + − + −⎣ ⎦

∑ ∑ ∑
, (2-54)

 ( ) ( )
2

, ' ' ' ' ' '
| | 0 ' | | 0

Re
4

p p p p p p
pr z nn nn nn nn nn nn

p n p n p
C J O P ipK Q Rλ

π

+∞ +∞ +∞

=−∞ = ≠ = ≠

⎡ ⎤= + + −⎣ ⎦∑ ∑ ∑ , (2-55)

where '
p

nnJ , '
p

nnK , '
p
nnL , and '

p
nnM  are expressed by Eqs. (B9)-(B12) in Appendix C and '

p
nnO - '

p
nnV  

are given by 

 ,* ,* ,*
' , ' ', '2p p p p p p p

nn n TM n n TM n n nO G A G A A A= + − , (2-56)

 ,* ,* ,*
' , ' ', '2p p p p p p p

nn n TE n n TE n n nP G B G B B B= + − , (2-57)

 ,* ,* ,*
' , ' ', '2p p p p p p p

nn n TE n n TM n n nQ G A G B A B= + − , (2-58)

 ,* ,* ,*
' , ' ', '2p p p p p p p

nn n TM n n TE n n nR G B G A A B= + − , (2-59)

 1,* 1,* 1,* 1,*
' ', ' , ', ' ,

p p p p p p p p p
nn n n TM n n TM n n TE n n TES A G A G B G B G+ + + += + + + , (2-60)

 1,* 1,* 1,* 1,*
' ', ' , ', ' ,

p p p p p p p p p
nn n n TM n n TE n n TE n n TMT B G B G A G A G+ + + += + − − , (2-61)

 1,* 1,*
' ' '

p p p p p
nn n n n nU A A B B+ += + , (2-62)

 1,* 1,*
' ' '

p p p p p
nn n n n nV A B A B+ += − . (2-63)

Four kinds of coefficients can be identified in the analytical solution of RPF, the scattering 

coefficients ( p
nA , p

nB ) which are determined by the particle properties (including size, axis ratio 

and the relative refractive index), the geometrical coefficients '
p

nnJ , '
p

nnK , '
p
nnL , and '

p
nnM  which 

depend only on the eccentricity parameter of the spheroid (cI), the beam shape coefficients 

( ,
p

n TEG , ,
p

n TMG ) which are determined by the beam properties in spheroidal coordinates, and the 
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cross-terms of the beam shape coefficients and the geometrical coefficients, '
p

nnO - '
p

nnV . 

2.2 Beam shape coefficients for an arbitrary shaped beam 

Theoretically, any shaped beam can be expanded in terms of spheroidal vector wave functions 

as indicated by Eqs.(2-8)-(2-9). And the spheroidal BSCs can be evaluated directly by using the 

orthogonality relations of the spheroidal vector wave functions. But this incurs a quite involved 

and tedious mathematical process. An alternative way is to use our good knowledge of spherical 

BSCs and establish a relation between the spheroidal and spherical BSCs. Nevertheless, it is not 

a straightforward step. In shaped beam scattering by a spherical particle, the z axis of particle’s 

Cartesian coordinates can be set along propagation direction of the incident beam so that the 

incidence angle is zero. For a spheroid, however, the z axis must be symmetrical axis of the 

spheroid to generate the spheroidal vector wave functions. In this case, the BSC evaluation 

method in spherical coordinates for the beam of incidence angle being zero should be 

generalized to the case of beam of arbitrary incidence angle. 

In this section, we first discuss the evaluation of the spherical BSCs. Then a transformation 

relation from spherical BSCs ( ,
m
n TEg , ,

m
n TMg ) to spheroidal ones ( ,

m
n TEG , ,

m
n TMG ) is given. 

2.2.1 Spherical beam shape coefficients 

By using the VSM, solutions to the scalar wave equation (2-2) in the spherical coordinates (r, 

θ,φ ) are the scalar eigenfunctions written in the following form: 

 | |( ) (cos )exp( )m
mn n nz r P imψ θ φ= , (2-64)

where ( )nz r  is the spherical Bessel function and (cos )m
nP θ  is the associated Legendre function 

of the first kind (Arfken, 1985). 

Then the spherical vector wave functions (mmn, nmn) (see Appendix D for their complete 

expressions), as solutions to the vector wave Eq. (2-1), are generated by following vector 

operations on the scalar function mnψ : 
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 ( )mn mnψ= ∇×m r . (2-65)

 
1

mn mnk
= ∇×n m . (2-66)

Finally the incident, scattered and internal fields can be expressed as an infinite series of these 

vector functions. We note that for the descriptions of the incident and scattered fields, the 

spherical Bessel function of the first kind is adopted in the scalar function Eq.(2-64), while for 

the description of the internal field, the Hankel function of the first kind is used. 

In the GLMT for a sphere (Gouesbet et al., 1988), two Bromwich scalar potentials, UTM and UTE, 

are introduced to describe the incident fields (E(i), H(i)). Such a description is essentially 

equivalent to the following beam expansion in terms of the spherical vector wave functions 

( ( )i
mnm , ( )i

mnn ):  

 ( )( ) 1 ( ) ( )
, , ,

| |, 0
( , , ) ( , , )i n m i m i

n pw n TE mn n TM mn
m n m n

c i ig r g rθ φ θ φ
+∞ +∞

+

=−∞ = ≠

= +∑ ∑E m n , (2-67)

 ( )( ) 1 ( ) ( )I
, , ,

| |, 00

( , , ) ( , , )i n m i m i
n pw n TM mn n TE mn

m n m n

ik c i g r ig rθ φ θ φ
ωµ

+∞ +∞
+

=−∞ = ≠

= − +∑ ∑H m n , (2-68)

where the plane wave term ,n pwc  reads as 

 ,
2 1
( 1)n pw
nc

n n
+

=
+

, (2-69)

and ,
m
n TMg  and ,

m
n TEg  are the BSCs in spherical coordinates (or more briefly, spherical BSCs). In 

the same manner as done for the incident field, expressions of the scattered and internal fields 

can also be obtained from their description by UTM and UTE in the spherical coordinates 

(Gouesbet et al., 1988). 

By using the orthogonality relation of the associated Legendre function (cos )m
nP θ of the first 

kind and Ferrer’s definition and that of the exponential function exp( )imφ , the spherical BSCs 

can be formulated in as a double integral of the r components of the incident electric and 

magnetic fields ( )i
rE  and ( )i

rH  (Maheu et al., 1988; Barton, 1988): 
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( )1   2I

,  0  0
I 0

( )! ( , , )( ) (cos )sin exp( )
4 ( )! ( )

in
mm r

n TM n
n

n m k r E rig P im d d
n m z k r E

π π θ φ θ θ φ θ φ
π

+ −−
= −

+ ∫ ∫ , (2-70)

 
( )1   2

I
,  0  0

I 0

( )! ( , , )( ) (cos )sin exp( )
4 ( )! ( )

in
mm r

n TE n
n

n m k r H rig P im d d
n m z k r H

π π θ φ θ θ φ θ φ
π

+ −−
= −

+ ∫ ∫ . (2-71)

Evidently, the coefficients evaluated by these integrals depend on the radial coordinate r, but 

they should not be. Therefore in numerical calculation the value of r must be carefully chosen to 

ensure the fast convergence of the integral and the independence of the BSCs (Ren, 1995).  

To eliminate the r-dependence of the BSCs, the following triple integrals of ( )i
rE  and ( )i

rH  are 

introduced (Gouesbet and Lock, 1994): 

( )1   2  

, I I I2  0  0  0
0

( )! ( , , )(2 1)( ) ( ) exp( ) (cos )sin ( )
2 ( )!

in
mm r

n TM n n

n m E rn ig k rz k r im P d d d k r
n m E

π π θ φφ θ θ θ φ
π

+ ∞−+ −
= −

+ ∫ ∫ ∫ , (2-72)

( )1   2  

, I I I2  0  0  0
0

( )! ( , , )(2 1)( ) ( ) exp( ) (cos )sin ( )
2 ( )!

in
mm r

n TE n n

n m H rn ig k rz k r im P d d d k r
n m H

π π θ φφ θ θ θ φ
π

+ ∞−+ −
= −

+ ∫ ∫ ∫ . (2-73)

A detailed discussion of the quadrature method is given by Gouesbet et al. (1996). Particularly 

when the coordinates of the beam are parallel to that of the particle, the most efficient technique 

for BSC evaluation is known as the localized approximation (Ren et al., 1998; Gouesbet, 1999).  

2.2.2 Spheroidal beam shape coefficients 

In GLMT for a sphere, we set the three axes of the beam coordinates u, v, and w parallel to their 

counterparts x, y, and z axes of the particle coordinates, respectively. Such a setting of the 

Cartesian coordinate system for a spherical particle will not cause any inconvenience for the 

generation of spherical wave functions owing to the spherical symmetry of the spherical particle. 

For a spheroidal particle, however, the z axis of its Cartesian coordinate system should be the 

rotation axis of symmetry of the spheroid to generate the spheroidal vector wave functions. Thus 

we should discuss the BSC evaluation method in a given coordinate system for arbitrary 

incident beam.  

To explain more clearly, the geometry of the beam and the particle illustrated in  Fig. 2.1 is re-

plotted in  Fig. 2.2. The shaped beam polarized in the u direction propagates along the w 

direction in its own Cartesian coordinates OB-uvw. After coordinate translation, the beam center 
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OB can be moved to the particle center OP so that OP-u’v’w’ is brought in. Taking the 

symmetrical axis of the spheroid as the z axis, we set the x axis of the Cartesian coordinates of 

the particle in the plane formed by the w’ and z axes. In this way the Cartesian coordinates of the 

particle OP-xyz are determined. Then the beam center OB is assumed to locate at (x0, y0, z0) in 

OP-xyz. We use Θbd to characterize the propagation direction of the beam relative to the OP-yz 

plane and Фbd to characterize the polarization direction of its electric field relative to the OP-xz 

plane, as illustrated in  Fig. 2.2. In the present Chapter Θbd and Фbd are also called the incidence 

angle and the polarization angle, respectively.  

 

Fig. 2.2 Geometry of Cartesian coordinates of the beam and spheroid. OP-xyz is the Cartesian coordinates of the 

particle and OP-u’v’w’ is paprallelly translated from the beam coordinates OB-uvw. The beam center OB locates at 

(x0, y0, z0) in OP-xyz. 

With the aid of such an angle set (Θbd, Фbd), the two systems can be related by a conversion 

matrix A as follows (Xu et al., 2007a):  

 
0

0

0

x x u
y y A v

wz z

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− =⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

, (2-74)

where A reads as 

w

v 

u 

OB 

x 

y 

z OP 

Θbd 

u’
w’ 

v’ 

Фbd 
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bd bd bd bd bd

bd bd

bd bd bd bd bd

cos cos cos sin sin
sin cos 0

sin cos sin sin cos
A

Θ Φ − Θ Φ Θ⎛ ⎞
⎜ ⎟= Φ Φ⎜ ⎟
⎜ ⎟− Θ Φ Θ Φ Θ⎝ ⎠

. (2-75)

On the basis of such a transformation, the description of the incident fields E(i)(Eu, Ev, Ew) and 

H(i) (Hu, Hv, Hw) in the beam coordinates OB-uvw can be transformed to their counterparts E(i)(Ex, 

Ey, Ez) and H(i)(Hx, Hy, Hz) in particle coordinates OP-xyz: 

 
bd bd bd bd bd

bd bd

bd bd bd bd bd

cos cos cos sin sin
sin cos

sin cos sin sin cos

x u v w

y u v

z u v w

E E E E
E E E

E E E E

⎧ = Θ Φ − Θ Φ + Θ
⎪

= Φ + Φ⎨
⎪ = − Θ Φ + Θ Φ + Θ⎩

. (2-76)

Via projection, the x, y and z components of the incident fields can be transformed to the 

spherical coordinates (r, θ, φ ). And for the BSC evaluation, only the r components of incident 

electromagnetic fields are required:  

 ( ) sin cos sin sin cosi
r x y zE E E Eθ φ θ φ θ= + + , (2-77)

 ( ) sin cos sin sin cosi
r x y zH H H Hθ φ θ φ θ= + + . (2-78)

Substituting Eqs. (2-77) and (2-78), respectively, into Eqs.(2-72)  and (2-73) yields the spherical 

BSCs, ( ,
m
n TEg , ,

m
n TMg ).  

Through expansion of the spherical harmonics (cos ) ( )m
n nP z krθ  into summation of spheroidal 

ones ( , ) ( , )mn mnS c R cη ξ  and invoking the relationship between the unit vectors in spherical and 

spheroidal coordinates, Han et al. (2001a, 2003) obtained the relations between the spherical 

vector wave functions (mmn, nmn) and the spheroidal ones (Mmn, Nmn) for positive mode of m. 

However, for the scattering of a spheroid with arbitrary orientation and location in a shaped 

beam, both positive and negative modes of m are needed. Therefore the relations between (mmn, 

nmn) and (Mmn, Nmn) for all modes of m are necessary. After a careful derivation, following 

relation is found: 

 ( ) | | ( )
| |

| |,| | 1 | |

2( | |)!( , , ) ( ; , , )
(2 1)( | |)!

l n
i m l i

mn n m ml
l m m m l

n m ir d c
n n m N

θ φ ξ η φ
−∞

−
= +

+′=
+ −∑m M , (2-79)
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 ( ) | | ( )
| |

| |,| | 1 | |

2( | |)!( , , ) ( ; , , )
(2 1)( | |)!

l n
i m l i

mn n m ml
l m m m l

n m ir d c
n n m N

θ φ ξ η φ
−∞

−
= +

+′=
+ −∑n N , (2-80)

where the prime on the sum symbol indicates that the summation starts from 
0
1
⎧ ⎫
⎨ ⎬
⎩ ⎭

 over 
even
odd

⎧ ⎫
⎨ ⎬
⎩ ⎭

 

indices of r when (n–|m|) is 
even
odd

⎧ ⎫
⎨ ⎬
⎩ ⎭

.  

Substitution of Eqs.(2-79) and (2-80) into Eqs. (2-67)-(2-68) leads to the beam expansion in 

terms of spheroidal vector wave functions as indicated by Eqs. (2-8)-(2-9), with the spheroidal 

BSCs determined by:  

 , I,
0,1| | I

2( 2 )!1 ( )
( ) ( )( 1) !

m nm m
n TE rr m TE

rm n

r m
G g d c

N c r m r m r

∞

+
=

+′=
+ + +∑ , (2-81)

 , I,
0,1| | I

2( 2 )!1 ( )
( ) ( )( 1) !

m nm m
n TM rr m TM

rm n

r m
G g d c

N c r m r m r

∞

+
=

+′=
+ + +∑ . (2-82)

Since the spheroidal angular functions Smn can be expressed as the following sums of infinite 

series of the Legendre functions:  

 | |
0,1

( , ) ( ) (cos )mn m
mn r m r

r
S c d c Pη θ

∞

+
=

′= ∑ , (2-83)

the expansion coefficients mn
rd  in the prolate spheroidal coordinates can be determined by 

solving a recurrence relationship obtained by substituting Eq. (2-83) into Eq.(2-5) (see 

Appendix A). And they can be normalized by Nmn: 

 
2

0,1

2( 2 | |)!( ) ( )
(2 2 | | 1) !

mn
mn r

r

r mN c d c
r m r

∞

=

+′ ⎡ ⎤= ⎣ ⎦+ +∑ . (2-84)

2.2.3 Applicability of the classical localization principle 

In addition to the quadrature method, the localized approximation which is based on the 

localization principle of van de Hulst (1957) is widely employed as an approximate method to 

evaluate the BSCs because of its high efficiency in computation (Gouesbet, 1990; Gouesbet et 

al., 1995; Maheu et al., 1989; Ren et al., 1992). Mathematically, it takes the operations of 
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r=(n+1/2)/kI and θ→π/2 on the r components of electromagnetic fields to simplify the integral.  

From the viewpoint of the localization principle, each partial wave of order n in the particle’s 

coordinate system corresponds to a localized ray (actually an annular bundle of rays) passing the 

origin of the spherical particle at a distance of r=(n+1/2)/kI along the positive direction of the z 

axis. Therefore, to employ the localization principle, there exists a premise that the beam 

containing the localized rays also propagates along the positive direction of the z axis in the 

particle’s Cartesian coordinate system and has the same polarization direction (along the x axis) 

as the localized rays. Such a premise can be satisfied by the spherical particle when we set the 

beam coordinate system OB-uvw parallel to the particle coordinate system OP-xyz, as done in 

Lorenz-Mie theory and GLMT.  

However, for a spheroidal particle, the z axis of its Cartesian coordinate system is defined by its 

symmetrical axis and the Cartesian coordinates of the beam and spheroid are not parallel to each 

other, as discussed in Subsection  2.2.2. In this case, the localization principle method cannot be 

applied. We take a beam obliquely incident on the spheroid for example. The localized rays 

contained in the beam propagate along positive direction of the w axis in its own coordinates 

OB-uvw, while the partial waves in the particle’s coordinates OP-xyz require that the localized 

rays propagate along the z axis. Therefore the localization principle is invalid and we are forced 

to adopt the quadrature method instead for BSC evaluation. 

As a straightforward proof to reveal the inapplicability of the localization principle, a plane 

wave is provided to be incident along the x axis of the Cartesian system of the particle; therefore 

we have Ez=1 and Ey=Ex=0. Substitution of these components of electromagnetic fields into Eq. 

(2-77) yields cosr zE Eθ= . With a further localization operation of θ→π/2, we have ,
m
n TMg =0, 

which inevitably makes the all reconstructed radial components of the electric field identical to 

zero, obviously inconsistent with the original description of the incident fields.  

Moreover, in localization principle, the localized ray is assumed to propagate along straight 

lines, which means that inaccuracies will be incurred when the beam is extremely focused. This 

will be exemplified in Subsection  2.2.5.  
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2.2.4 Field reconstruction from spheroidal beam shape coefficients  

To verify the accuracy of the evaluated BSCs in spheroidal coordinates, comparison of the 

reconstructed fields can be made with the original ones. All the components of the incident 

fields can be reconstructed from spheroidal BSCs via following formulas, which originate from 

Eqs. (2-8) and (2-9):  

 1 ( ) ( )
, , , ,

, 0

n m i m i
n TE mn n TM mn

m n m n
E i iG M G Nξ ξ

∞ ∞
+

ξ
=−∞ = ≠

⎡ ⎤= +⎣ ⎦∑ ∑ , (2-85)

 1 ( ) ( )
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n m i m i
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 1 ( ) ( )
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n m i m i
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∞ ∞
+
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 1 ( ) ( )I
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∞ ∞
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 1 ( ) ( )I
, , , ,

, 00

n m i m i
n TM mn n TE mn

m n m n

ikH i G M iG Nφ φωµ

∞ ∞
+

φ
=−∞ = ≠

⎡ ⎤= − +⎣ ⎦∑ ∑ , (2-90)

where the ξ, η, and φ  components of the spheroidal vector wave functions ( )i
mnM  and ( )i

mnN  are 

listed in Appendix B. 

Our objective is to directly compare original and reconstructed incident electromagnetic fields in 

Cartesian coordinates; therefore the description of the incident field in the spheroidal 

coordinates (ξ, η,φ ) should be transformed to its counterpart in the Cartesian system (x, y, z) via 

unit vector relationship  as follows (Korn and Korn, 1968): 
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The Cartesian coordinates (x, y, z) should also be converted to spheroidal ones (ξ , η , φ ) via the 

following coordinate transformation for a prolate spheroid: 

 2 2 2 2 2 2 2 2

2
2 2

z
x y z f fz x y z f fz

η =
+ + + + + + + + −

, (2-92)

 
2 2 2 2 2 2 2 22 2
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f
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+ + + + + + + + −
= , (2-93)

and the following transformation for an oblate one: 

2 2 2 2 4 2 2 2 2 2 2 4 2 2 2 2 4 2 2 4

2

2 2 2 2 2 2

z

y z x f y y z y x y f z x z f z x f x f
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, (2-94)
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In addition, for both prolate and oblate spheroids, φ  can be calculated by  
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, (2-96)

Equations (2-91)-(2-96) are used for the reconstruction of electromagnetic fields from BSCs at 

any point (x, y, z) of the Cartesian coordinates. Essentially, Eqs. (2-92)-(2-96) are calculated 

from the inverse relationship between Cartesian coordinates (x, y, z) and the spheroidal ones  (ξ , 
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η , φ ) as follows (Flammer, 1957): 
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where ξ , η , and φ  have the ranges 
1
0

ξ
⎧ ⎫

≤ ≤ ∞⎨ ⎬
⎩ ⎭

, 1 1η− ≤ ≤ , and 0 2φ π≤ ≤ , respectively. The 

lower limit of the radial coordinate 
1
0
⎧ ⎫
⎨ ⎬
⎩ ⎭

 refers to the 
prolate
oblate

⎧ ⎫
⎨ ⎬
⎩ ⎭

 spheroid, as does the operation 

of { }m  in Eqs. (2-91) and (2-97).  

As to the electromagnetic field reconstruction, it is noteworthy that an arbitrary set of the BSCs 

can be used to reconstruct the electromagnetic fields, well satisfying the Maxwell equations. 

Although the description of the incident beam, e.g., Davis’s first-order (Davis, 1979) or Barton 

and Alexander’s fifth-order (Barton and Alexander, 1989) description of the Gaussian beam, 

might not be strictly Maxwellian, different methods (Gouesbet et al., 1988) for BSC evaluation, 

including the quadrature method, finite series, or localized approximation, actually serve as 

different wave filters to extract the Maxwellian components from the original non-Maxwellian 

description of the incident fields described by the finite-order approximation. To evaluate the 

quality of BSCs from these different filters, the best criterion is to compare the reconstructed 

Maxwellian fields from them with the original ones. The set of BSCs leading to a best fit of 

these two fields can be considered as the best solution. 

2.2.5 Validation of beam shape coefficients 

First, we compare the spheroidal BSCs obtained by the proposed method with those obtained by 

Asano and Yamamoto (1975) for oblique incidence of the plane wave. In the paper of Asano 

and Yamamoto (1975), two basic polarization modes for plane wave incidence are discussed, i.e. 

the TM and TE modes, which correspond to the polarization angle Фbd defined in the present 

theory as 0˚ and –90˚. Furthermore, the incidence angle defined by Asano and 



 Chapter 2. Generalized Lorenz-Mie Theory for Shaped Beam Scattering by a Spheroid 

 41

Yamamoto is equivalent to Θbd defined in the present theory. 

Table 2.1 Spheroidal beam shape coefficients for an oblique incident plane wave of λ0=0.6328 µm, w0→∞, Θbd=45˚ 

and Фbd=0˚. The beam center OB has the coordinates x0=y0=z0=0 µm in particle’s coordinates OP-xyz and the spheroid 

has the eccentricity parameter cI=1.0.  

n, m ,
m
n TEiG  ,

m
n TMG  mnf  mng  

n=1, m=0 (0, 0) (1.1079, 0) 0 –1.1079 
n=2, m=0 (0, 0) (1.2124, 0) 0 –1.2124 
n=3, m=0 (0, 0) (0.9845, 0) 0 –0.9845 
n=1, m=1 (–0.7607, 0) (–0.5466, 0) 1.5213 1.0932 
n=2, m=1 (–0.3031, 0) (–0.0046, 0) 0.6063 0.0092 
n=3, m=1 (–0.1183, 0) (0.1698, 0) 0.2365 –0.3396 
n=2, m=2 (–0.1477, 0) (–0.1055, 0) 0.2953 0.2110 
n=3, m=2 (–0.0740, 0) (–0.0267, 0) 0.1480 0.0535 
n=3, m=3 (–0.0182, 0) (–0.0130, 0) 0.0364 0.0259 

Table 2.2 Spheroidal beam shape coefficients of a parallel incidence of Gaussian beam of λ0=0.6328 µm, w0=3λ0, and 

Θbd=Фbd=0. The beam center OB has the coordinates in particle’s coordinates OP-xyz x0=y0=z0=0 µm and the spheroid 

has the eccentricity parameter cI=1.0. Attention should be paid to that in such a case of on-axis incidence, only the 

terms of m=±1 in BSCs are involved and all the other coefficients of |m|≠1 are equal to zero. 

n, m ,
m
n TEiG  ,

m
n TEiG−  ,

m
n TMG  ,

m
n TMG−  

n=1, m=1 (–0.7548, 0) (0.7548, 0) (–0.7548, 0) (–0.7548, 0) 
n=2, m=1 (–0.4196, 0) (0.4196, 0) (–0.4196, 0) (–0.4196, 0) 
n=3, m=1 (–0.2876, 0) (0.2876, 0) (–0.2876, 0) (–0.2876, 0) 
n=4, m=1 (–0.2184, 0) (0.2184, 0) (–0.2184, 0) (–0.2184, 0) 
n=5, m=1 (–0.1703, 0) (0.1703, 0) (–0.1703, 0) (–0.1703, 0) 
n=6, m=1 (–0.1396, 0) (0.1396, 0) (–0.1396, 0) (–0.1396, 0) 
n=7, m=1 (–0.1153, 0) (0.1153, 0) (–0.1153, 0) (–0.1153, 0) 
n=8, m=1 (–0.0974, 0) (0.0974, 0) (–0.0974, 0) (–0.0974, 0) 
n=9, m=1 (–0.0824, 0) (0.0824, 0) (–0.0824, 0) (–0.0824, 0) 

n=10, m=1 (–0.0705, 0) (0.0705, 0) (–0.0705, 0) (–0.0705, 0) 

Let a plane wave with the incidence angle Θbd=45˚ and polarization angle Фbd=0˚ incident on a 

spheroid of the eccentricity parameter 1.0 ( Ic =1.0); the numerical results of spheroidal BSCs 
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( ,
m
n TEG , ,

m
n TMG ) can be found in  Table 2.1. They are compared with the BSCs (fmn, gmn) obtained 

by Asano and Yamamoto (1975). Only the BSCs of positive modes (m) are given, since the 

negative ones (–m) can be obtained from those of positive ones via the following relationship:  
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When the polarization angle Фbd is –90˚, we obtain  
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Eqs. (2-98)-(2-99) will be used in Subsection  2.3.1 to yield the same results of plane wave 

expansion in spheroidal coordinates as described by Asano and Yamamoto (1975) as the TM 

mode, while Eqs. (2-100) and (2-101) lead to the TE mode. 

Second, we discuss the symmetry relationship between the BSCs of positive mode (+m) and 

those of negative mode (–m) in spheroidal coordinates. The circular Gaussian beam is used for 

our demonstration calculation. The description of its electromagnetic fields can be recovered 

from that of an elliptical Gaussian beam (or “laser sheet,” described in Appendix E) by setting 

the beam-waist radii equal along the u and v axes, namely, w0u=w0v, and setting the astigmatism 

to be zero (wu=wv=0). 

Consider such a beam of waist radius w0=3λ0 (λ0=0.6328 µm) propagating along the positive z 

axis (Θbd=0˚) and incident on a spheroid of eccentricity parameter Ic =1.0, its electric field 

polarized in the x direction (Фbd=0˚), and its center located at x0=y0=z0=0 µm, and we can find 

the following relationship for spheroidal BSCs of positive mode m=1 and negative mode m=–1 

(some results are listed  Table 2.2):  
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 1 1
, , 1

1
2n TE n TE nG G ig+ −= − = , (2-102)

 1 1
, , 1

1
2n TM n TM nG G g−= = . (2-103)

Actually, as indicated by Eqs. (2-81) and (2-82), the spheroidal BSCs are an infinite series of the 

spherical ones. Therefore all the symmetry relationships (Ren et al., 1994) between the spherical 

BSCs , /
m

n TE TMg +  and , /
m

n TE TMg −  for some shaped beam, e.g., a circular Gaussian beam or a laser 

sheet, are inherited by spheroidal BSCs. However, the premise is that the Cartesian coordinates 

of the beam and the particle are parallel to each other, namely, Θbd=Фbd=0˚.  

Third, we use the spheroidal BSCs to reconstruct the incident fields. An extremely focused 

Gaussian beam of w0=1.0 λ0=0.6328 µm (with the far-field divergence angle θd=λ0/(πw0)=18.24˚) 

is assumed to propagate along the z axis (Θbd=0˚), its electric field is polarized in the x direction 

(Фbd=0˚), and its center is located at x0=y0=z0=0 µm. It is expanded in the spheroidal coordinates 

corresponding to a particle of eccentricity parameter Ic =1. As shown in  Fig. 2.3, the 

reconstructed field of Ex from the BSCs calculated by the localization principle deviates ~5% 

from the original one near the beam axis while the reconstructed field Ex from BSCs calculated 

by quadrature coincides well with the original one. As analyzed in Subsection  2.2.3, such a 

deviation is caused by the localization principle, which supposed all the localized rays propagate 

along the positive z axis. Strictly speaking, it can be satisfied only when on-axis plane wave 

incidence is concerned. Because of the change of the wavefront curvature radius during the 

propagation, the geometrical rays contained in a Gaussian beam do not propagate along straight 

lines, especially when the beam is extremely focused and has a large divergence angle. Our 

numerical results show that for on-axis beam incidence, a good reconstruction can be achieved 

when the divergence angle of the Gaussian beam is less than θd≤5˚. 
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Fig. 2.3 Reconstruction of Ex(x, 0, 0) of a highly focused Gaussian beam with w0=λ0=0.6328 µm from the 

spheroidal BSCs calculated by localization principle and quadrature method. Location of the beam center is 

x0=y0=z0=0 and the angle set is (Θbd=Фbd=0˚). 

To exemplify numerically the inapplicability of the localized principle in the case of oblique 

incidence, comparison of the reconstructed fields from localization principle and quadrature 

method are made for an astigmatic laser sheet of w0u=1.0 µm, w0v=1.5 µm, and Θbd=Фbd=45˚. 

The locations of the waists along the u and v axes, wu and wv, are set as 0 and 5 µm, respectively. 

As illustrated by  Fig. 2.4, the reconstructed x component of the Maxwellian electric field from 

the BSCs calculated by the localization principle deviates much from the original one at the 

plane φ =0˚, while the BSCs calculated by quadrature method again lead to satisfactory 

reconstruction.  
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Fig. 2.4 Reconstruction of Ex(x, 0, 0) of an astigmatic elliptical Gaussian beam from the spheroidal BSCs calculated 

by localization principle and quadrature method. The beam has the waist radii of w0u=1.0 µm, w0v=1.5 µm, 

wavelength λ0=0.6328 µm and the center location x0=y0=z0=0. The angle set of the beam is Θbd=45˚ and Фbd=45˚. 

The locations of the waists along u- and v- axes, wu and wv, are set as 0 and 5 µm, respectively. 

2.3 Special cases 

The results for an arbitrarily oriented shaped beam scattering by a spheroid should also stand for 

the special case of a beam scattering by a sphere as well as for oblique plane wave scattering by 

a spheroid. As a check, we demonstrate in this subsection that these special cases can be 

recovered from the above spheroidal scattering theory.  

2.3.1 Plane wave incidence 

The spheroidal vector wave functions are related to the odd and even terms as follows:  

 mn emn omni= +M M M , (2-104)
 mn emn omni= +N N N . (2-105)

The complete expressions of the odd and even terms of (Mmn, Nmn) are given in Appendix B. As 

indicated by Eq.(2-3), in spheroidal coordinates the scalar function ψ is defined by angular and 

radial functions of absolute mode |m|. Therefore they have the following symmetry relationships: 

 
( )
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Accordingly, Eqs.(2-8) and (2-9) can be rewritten as 
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Since for the case of plane wave incidence of the TM mode that corresponds to Θbd=ζ (ζ is the 

incidence angle, see Asano and Yamamoto (1975)) and Фbd=0˚, the symmetry relationships 

indicated by Eqs.(2-98)-(2-99) are found for the spheroidal BSCs of positive mode +m and 

negative mode –m. Substituting them into Eqs.(2-108) and (2-109), we have  

 ( )( ) ( ) ( )

0 , 0

i n i i
mn omn mn emn

m n m n
i f ig

+∞ +∞

= = ≠

= −∑ ∑E M N , (2-110)

 ( )( ) ( ) ( )I

0 , 00

i n i i
mn emn mn omn

m n m n

k i g if
ωµ

+∞ +∞

= = ≠

= − +∑ ∑H M N , (2-111)

which are exactly same with Asano and Yamamoto’s expansion for plane wave incidence, with 

the following description in Cartesian coordinates of the particle: 

 ( ) ( )( )
Icos sin exp sin cosi ik x zζ ζ ζ ζ= − − +⎡ ⎤⎣ ⎦E i k , (2-112)

 ( )( ) I
I

0

exp sin cosi k ik x zζ ζ
ωµ

= − +⎡ ⎤⎣ ⎦H j . (2-113)

Next, let Θbd=ζ and Фbd=–90˚ and use the symmetry relationships indicated by Eqs. (2-100) and 

(2-101), Eqs.(2-108) and (2-109) become 

 ( ) ( ) ( )

0 , 0

i n i i
mn emn mn omn

m n m n
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∞ ∞

= = ≠
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∞ ∞

= = ≠

⎡ ⎤= −⎣ ⎦∑ ∑H M N . (2-115)

Namely the TE mode description for plane wave incidence is then recovered, leading to the 



 Chapter 2. Generalized Lorenz-Mie Theory for Shaped Beam Scattering by a Spheroid 

 47

description in Cartesian coordinates of the particle as follows: 

 ( )( )
Iexp sin cosi ik x zζ ζ= − +⎡ ⎤⎣ ⎦E j , (2-116)

 ( ) ( )( ) I
I

0

cos sin exp sin cosi k ik x zζ ζ ζ ζ
ωµ

= − +⎡ ⎤⎣ ⎦H i k . (2-117)

Eqs. (2-114)-(2-117) agree with Asano and Yamamoto’s description of incident fields of the TE 

mode indicated by Eqs. (2-21)-(2-23). 

Similar retrievals also exist for the internal and scattering fields (E(t), H(t)) and (E(s), H(s)). Thus 

we conclude that the current theory is consistent with the case of plane wave scattering by a 

spheroid. 

2.3.2 Spherical particle scattering 

When a/b=1, the spheroid becomes a sphere. In this case, the semifocal length of the spheroid f 

and the dimensionless eccentricity parameter of the spheroid Ic  also tend to zero. The spheroidal 

expansion coefficients become 

 | |
| |

 0           
(0)

 1            
m l

n m

n l
d

n l−

≠⎧
= ⎨ =⎩

. (2-118)

Replacing r by l–m and substituting l by n, Eqs. (2-79) and (2-80) become 

 
( ) ( )

| |

2( | |)! 1( , , ) (0; , , )
(2 1)( | |)!

i i
mn mn

m n

n mr
n n m N

θ φ η ξ φ+
=

+ −
m M , (2-119)

 ( ) ( )

| |

2( | |)! 1( , , ) (0; , , )
(2 1)( | |)!

i i
mn mn

m n

n mr
n n m N

θ φ η ξ φ+
=

+ −
n N . (2-120)

Also, the spheroidal BSCs expressed by Eqs. (2-81) and (2-82) become 

 ,

2( )!1
( 1)( | |)!

m
n TE

m n

n m
G

N n n n m
+

=
+ −

, (2-121)

 ,

2( )!1
( 1)( | |)!

m
n TM

m n

n m
G

N n n n m
+

=
+ −

, (2-122)
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where 

 | |
2( | |)!

(2 1)( | |)!m l
n mN

n n m
+

=
+ −

. (2-123)

Therefore the BSCs become 

 , ,
m pw m
n TE n n TEG C g= , (2-124)

 , ,
m pw m
n TM n n TMG C g= , (2-125)

where the plane wave term pw
nC  is given by Eq.(2-69). 

Meanwhile, substituting Eq. (2-123) into Eqs. (2-119) and (2-120) leads to the degeneracy of the 

spheroidal vector wave functions to the spherical ones: 

 ( ) ( )( , , ) (0; , , )i i
mn mnr θ φ η ξ φ=m M , (2-126)

 ( ) ( )( , , ) (0; , , )i i
mn mnr θ φ η ξ φ=n N , (2-127)

Substituting Eqs.(2-124)-(2-127) into the incident field expansion in spheroidal coordinates 

indicated by Eqs. (2-8) and (2-9) leads to the field description in spherical coordinates indicated 

by Eqs.(2-67) and (2-68). And similar retrievals also exist for the internal and scattered fields. 

Thus we can end this part of the discussion with the conclusion that arbitrary shaped beam 

scattering by a sphere can be recovered from the theory for a spheroid when the semifocal 

length becomes zero. 

2.4 Numerical results 

The general Lorenz-Mie theory for a spheroid has been developed in Sections  2.1- 2.2. Two 

special cases, plane wave scattering by a spheroid and shaped beam scattering by a sphere are 

found retrievable from the current theory. In this section, we carry out the numerical validation 

of the current theory. On such a basis, more demonstration calculations of far-field scattering, 

extinction crosssection, and radiation pressure force are performed for the cases of interests to 

us. 
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2.4.1 Far-field scattering 

To compare with Asano and Yamamoto’s results for the special case of plane wave incidence 

(Asano and Yamamoto, 1975), we calculate the far-field plane wave scattering by a prolate 

spheroid of axis ratio a/b=2.0 and eccentricity parameter cI=1.0. The particle is assumed to be a 

small water droplet suspended in air so that the relative refractive index II Iˆ ˆ ˆ/m m m= =1.333. The 

plane wave of wavelength λ0=0.6328 µm has the incidence angle Θbd=45˚ and polarization angle 

Фbd=–90˚, corresponding to the TE mode (Asano and Yamamoto, 1975). The scattering patterns 

illustrated in  Fig. 2.5 are the same as those in Fig. 6 given by Asano and Yamamoto (1975). A 

rotation of angle from Фbd=–90˚ to Фbd=0˚ brings out the TM mode, which has the scattering 

profiles shown in  Fig. 2.6, being the same as Fig. 8 given by Asano and Yamamoto (1975). 
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Fig. 2.5 Plane wave scattering by a prolate spheroid of a/b=2.0 and eccentricity parameter cI=1. The particle is 

assumed to be a small water droplet suspended in the air so that the relative refractive index m̂= II Iˆ ˆ/m m =1.333. The 

plane wave of wavelength λ0=0.6328 µm has the incidence angle Θbd=45˚and polarization angle Фbd=–90˚, 

corresponding to the TE mode. The figure is same as Fig. 6 given by given by Asano and Yamamoto (1975). Note 

that for φ =0˚ and φ =90˚, i2=0.  
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Fig. 2.6 Same as  Fig. 2.5 but for TM mode. This figure is same as Asano’s Fig. 8 given by Asano and Yamamoto 

(1975). Note that for φ =0˚, i1=0. 

Then, we compare the numerical results of the scattered fields of a spheroid of axis ratio a/b→1 

to those obtained by GLMT for a sphere in the case of on-axis laser sheet illumination. A laser 

sheet of waist radii w0x=1.0 µm and w0y=1.5 µm, and wavelength λ0=0.6328 µm is incident on a 

prolate spheroid of axis ratio a/b=1.0001 and semiminor axis length 0.5 µm (b=0.5 µm). The 

electromagnetic fields of a laser sheet are given in Appendix E. The particle is still assumed to 

be a water droplet suspended in air. The scattering patterns for the three azimuthal angles φ =0˚, 

45˚ and 90˚ are presented in  Fig. 2.7 and compared with those obtained by the GLMT for a 

sphere of radius 0.5 µm (r=0.5 µm) and the same refractive index. As a result, excellent 

agreement is found, since the axis ratio of the spheroid a/b tends to 1 in this case.  

When the sphere deviates more from the sphere, e.g., for a prolate spheroid of axis ratio a/b=1.2, 

its scattering pattern at the forward angles differ only slightly from that of a spherical particle, as 

seen from the comparison of  Fig. 2.7 with  Fig. 2.8. This is because the prolate spheroids with 

a/b=1.2 ( Fig. 2.8) and a/b=1.0001 ( Fig. 2.7) have the same projection area (πb2) for forward 

diffraction. At larger angles, the scattered intensities are obviously different since the scattering 

patterns are dominated by reflection and refraction, which are greatly affected by the surface 

curvature of the particle. As to the oblate spheroid, the forward diffraction is enhanced due to a 
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larger projection area (=πa2), as indicated by  Fig. 2.9. 
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Fig. 2.7 Laser sheet scattering by a prolate spheroid of refractive index m̂=1.33, axis ratio a/b=1.0001, and semi-

minor axis b=0.5 µm. The parameters for the beam are w0x=1.0 µm, w0y=1.5 µm, λ0=0.6328 µm, Θbd=Фbd=0˚. Its 

center OB has coordinates x0=y0=0.5 µm and z0=0.0 µm in the particle system OP-xyz. The particle is assumed to be 

suspended in the air. In the GLMT’s calculation for the sphere, its radius is given as 0.5 µm (r=0.5 µm).  
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Fig. 2.8 Laser sheet scattering by a prolate water spheroid of refractive index m̂=1.33, axis ratio a/b=1.2, semi-

minor axis b=0.5 µm. The parameters for the beam are w0x=1.0 µm, w0y=1.5 µm, λ0=0.6328 µm, Θbd=Фbd=0˚. Its 

center OB has the coordinates x0=y0=0.5 µm and z0=0.0 µm in the particle system OP-xyz. The particle is assumed to 

be suspended in the air. 
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Fig. 2.9 Same as  Fig. 2.8, but for an oblate spheroid of a/b=1.2. 

Finally, we examine the scattering diagram for different incident angles. Keeping the 

polarization angle Фbd being 0˚ and changing the incident angle Θbd from 0˚ to 45˚, and then to 

90˚, we find that the main peak at the scattering plane φ =0˚ moves from 0˚ to 45˚ ( Fig. 2.10) 

and then to 90˚ ( Fig. 2.11). Attention should be paid to the fact that for the special case of side-

on incidence (Θbd=90˚ and Фbd=0˚,  Fig. 2.11), the scattering plane φ =0˚ is where Hi lies in and 

is perpendicular to the incident plane defined in the coordinates of the beam. And the scattering 

plane φ =90˚ is the incident plane where Ei lies in. Both the scattering intensities and the 

incident intensities of the beam at these two planes have peaks along the propagation direction 

of the beam (corresponding to the scattering angle θ=90˚). For the incident fields, the peak is 

due to the Gaussian distribution of amplitude while for the scattered fields it is due to the 

diffraction, although it is not as remarkable as that in the plane φ =0˚. However, in the scattering 

plane of φ =45˚ ( Fig. 2.11) neither the incident fields nor the scattered ones keep such a peak.  
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Fig. 2.10 Same as  Fig. 2.8 but Θbd=45˚. 
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Fig. 2.11 Same as  Fig. 2.8 but Θbd=90˚. 

In addition, changing the refractive index from m̂ =1.333 to m̂ =1.333+0.1i weakens scattering 

intensities at all scattering angles due to absorption by the particle, as observed from a 

comparison of  Fig. 2.12 with  Fig. 2.11. 
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Fig. 2.12 Same as  Fig. 2.11 but m̂=1.333+0.1i. 

2.4.2 Scattering and extinction crosssections  

To verify our formulas of scattering and extinction crosssections, numerical calculations have 

been done in the case of plane wave illumination. And good agreement with the results obtained 

by Asano and Yamamoto (1975) has been found. 

Then, scattering and extinction crosssections versus the axis ratio a/b for the prolate spheroids 

of same semiminor axis length 0.5 µm (b=0.5 µm) illuminated by a laser sheet are calculated 

and illustrated in  Fig. 2.13 and  Fig. 2.14. The beam of wavelength λ0=0.6328 µm is assumed to 

have an incidence angle Θbd=0˚ and polarization angle Фbd=0˚. The beam waist radii along the u 

and v axes are 1.0 and 1.5 µm, respectively (w0u=1.0 µm and w0v=1.5 µm). The center of the 

beam is located at OP. Five curves are plotted in  Fig. 2.13 and  Fig. 2.14 for different refractive 

indices m̂ =1.333, 1.333+0.005i, 1.333+0.01i, 1.333+0.05i, and 1.333+0.1i. An interesting 

phenomenon is that when the axis ratio a/b increases from 1 to 2, the scattering and extinction 

crosssections Cext and Csca first increase to a stable value corresponding to the axis ratio around 

1.4, and then decreases rapidly with the growth of a/b. But for oblique incidence, when the 

incidence angle is Θbd=45˚, only monotonically increasing relations between Csca and Cext and 

a/b are found, as indicated by  Fig. 2.15 and  Fig. 2.16. These relations are also observed for 

plane wave parallel incidence along the z axis and oblique incidence.  
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Fig. 2.13 Extinction crosssection Cext versus axis ratio a/b of the spheroid. The beam with parameters Θbd=0˚, Фbd=0˚, 

x0=y0=z0=0 µm, w0x=1.0 µm, w0y=1.5 µm, and λ0=0.6328 µm illuminates the prolate spheroid of semi-minor axis 

length b=0.5 µm. The particle is assumed suspended in the air. Five curves are plotted in the figures for particles of 

refractive indices m̂=1.333, 1.333+0.005i, 1.333+0.01i, 1.333+0.05i, and 1.333+0.1i, respectively. 
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Fig. 2.14 Scattering crosssection Csca versus axis ratio a/b of the spheroid. Parameters of the incident beam and the 

prolate spheroid are the same as those in  Fig. 2.13. 
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Fig. 2.15 Extinction crosssection Cext versus axis ratio a/b of the spheroid. Parameters of the incident beam and the 

prolate spheroid are the same as those in  Fig. 2.13 except Θbd=45˚. 
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Fig. 2.16 Scattering crosssection Csca versus axis ratio a/b of the spheroid. Parameters of the incident beam and the 

prolate spheroid are the same as those in  Fig. 2.15. 

Next, we study the behavior of scattering crosssection versus the eccentricity parameter of the 

spheroid, Ic . The same laser sheet as the one used in  Fig. 2.13-  Fig. 2.16 illuminates the prolate 

spheroid of semiminor axis length b=0.5µm and axis ratio a/b=2.0. We use a real refractive 

index m̂ =1.333 so that Cext=Csca. Five curves are plotted for the incidence angles Θbd=0˚, 22.5˚, 

45˚, 67.5˚, and 90˚, respectively. We can observe in  Fig. 2.17 that the differences among the Csca 

curves associated with Θbd=45˚, 67.5˚, and 90˚ are much less significant than those among the 

curves associated with Θbd=0˚, 22.5˚, and 45˚. Such a phenomenon is also observed for plane 
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wave incidence, which is obtained by taking the beam-waist radii to be infinity. This means that 

for the small prolate droplet of eccentricity parameter cI≤10, the quantity of the scattered energy 

is not affected too much by the incidence angle when Θbd is larger than 45˚.  

Finally, we study the scattering crosssection for different polarization angles. The incidence 

angle is kept to be Θbd=45˚ and the polarization angles Фbd varies from 0˚ to 45˚, and then to 90˚, 

the curves of Csca do not change much for 1≤ Ic ≤10, as indicated by  Fig. 2.18. This means that 

quantity of the scattered energy by small prolate droplets is not sensitive to the polarization 

angle Фbd in the current case. 
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Fig. 2.17 Scattering crosssection Csca versus eccentricity parameter cI of a spheroidal droplet. The beam with 

parameters Фbd=0˚, x0=y0=z0=0 µm, w0x=1.0 µm, w0y=1.5 µm, and λ0=0.6328 µm illuminates the prolate spheroid of 

axis ratio a/b=2.0 and refractive index m̂=1.33. The particle is assumed to be suspended in the air. Five curves are 

plotted in the figure for the incidence angles Θbd=0˚, 22.5˚, 45˚, 67.5˚, and 90˚, respectively.  
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Fig. 2.18 Scattering crosssection Csca versus eccentricity parameter cI of a spheroidal water droplet. The beam with 

parameters Θbd=45˚, x0=y0=z0=0 µm, w0x=1.0 µm, w0y=1.5 µm and λ0=0.6328 µm illuminates the prolate spheroid of 

axis ratio a/b=2.0 and refractive index m̂=1.33. The particle is assumed suspended in the air. Three curves are 

plotted in the figure for polarization angles Фbd =0˚, 45˚, and 90˚, respectively.  

2.4.3 Radiation Pressure 

Relying on the theory developed in Subsection  2.1.4, this subsection presents some numerical 

results for RPCS calculation. Except for the red blood cell levitated by the beam from a sapphire 

laser used for the numerical simulation of the “Optical Stretcher” in Subsection  2.4.3.2, the 

particle used for calculation in the remaining parts is the slightly volatile silicone oil of 

refractive index m̂ =1.5 (Ashkin and Dziedzic, 1977). It is levitated in the air by the beam from 

an argon-ion laser of the wavelength λ0=0.5145 µm (Ashkin, 1970).  

Since the prolate and oblate spheroids are formed by rotating an ellipse around its major axis 

and minor axis respectively, these two axes are the symmetrical axes for the prolate and oblate 

spheroids, respectively. When the beam propagates parallelly to the symmetrical axis of the 

spheroid, the end-on incidence is brought in and when it propagates vertically to the 

symmetrical axis, the side-on incidence is brought in. For the end-on incidence, when the 

projection radius r is used to characterize the projection area of the spheroid, we have r=b for 

the prolate spheroid and r=a for the oblate one. Such a radius can be related to the eccentricity 

parameter by ( )2
I I / 1c k r a b= −  for the prolate spheroid and by ( )2

I I 1 1/ /c k r a b= −  for the 

oblate one. The influence of the particle size characterized by r on the RPF is studied for a given 
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axis ratio a/b. To study RPF in the experiment of the “Optical Stretcher”, the RPCS are 

calculated for a given volume of a soft and spherical red blood cell (RBC) acted on by two 

counter-propagating laser beams and deformed to the spheroidal shape. Besides, influences of 

the incidence and polarization angles as well as the beam center location are also be studied in 

the present subsection. 

Since the description of the beam is significant for the RPF calculation in some cases (Ren et al., 

1996), here it is necessary to point out that throughout the present subsection, Davis’s first order 

approximation (Davis, 1979) is used to describe the electromagnetic beams. Additionally, 

because of its high efficiency, the localized approximation (Ren et al., 1998; Gouesbet, 1999) is 

used for BSCs evaluation when the end-on incidence is involved and the electric field of the 

beam is polarized in the OP-xz plane ( bd bd 0Θ = Φ = ). In other situations the classical 

localization principle has been found inapplicable, as discussed in Subsection  2.2.3, therefore 

quadrature method (Gouesbet et al., 1996) is used instead.  

2.4.3.1 Radiation pressure force versus particle size 

In this subsection, we predict the radiation pressure exerted on a spheroid by an end-on incident 

plane wave. Both prolate and oblate spheroids are used for calculation. The results are compared 

to those obtained by the GLMT for the spherical particle of an exact axis ratio a/b=1.0. With the 

resolution of r being ∆r~2.5×10–4 µm, 8000 equidistant points within the interval 0.1 µm≤r≤2.0 

µm are used in RPCS calculation, since in such a range it is easier to recognize the position 

difference of the resonances between a spheroid and a sphere. 

As indicated in  Fig. 2.19, when compared to the RPCS curve versus the particle size for the 

sphere, the RPCS curve for the prolate spheroid of the axis ratio a/b=1.01 has a back- and 

downward shift. Such a shift becomes up- and forward for the oblate spheroid of the same axis 

ratio. Moreover, these shifts are enlarged when the spheroid deviates more from the sphere, e.g., 

a/b=1.1, as shown by  Fig. 2.20 (note that for the clarity of  Fig. 2.20, the RPCS curves of the 

prolate and oblate spheroids have been offset by the factors 2×10–12 and –2×10–12 respectively). 

After a careful identification, we can find in  Fig. 2.20 that when the sphere changes to the 

prolate spheroid, the points A2, B2, and C2 on the RPCS curve shift to A3, B3, and C3 

respectively, which implies an inward compression of the RPCS curve of the sphere. 
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In contrast, when the sphere changes to the oblate spheroid, the outward stretching is brought in 

and in this case the points A2, B2, and C2 are found to shift to A1, B1, and C1 respectively. 

Comparison of the distance between the two points A1 and A2 (or A2 and A3) to that between B1 

and B2 (or B2 and B3) shows that large particles have more obvious shift than small ones. 

Comparison of the RPCS values at the points corresponding to the same order of the resonances 

shows that the resonance strength is enhanced by the oblate spheroid but is reduced by the 

prolate one. Comparison of the RPCS curves in  Fig. 2.20 to those in  Fig. 2.19 shows that for the 

prolate spheroid increasing its axis ratio makes the resonances weaker in strength, narrower in 

width and more difficult to identify. But for the oblate spheroid, increasing the axis ratio makes 

the resonances stronger, wider and easier to identify. Besides, as for the spherical particle, 

increasing the size of the spheroid makes the resonances stronger but narrower. 
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 (c) 

Fig. 2.19 Comparison of the longitudinal RPCS Cpr,z exerted by a plane wave on the spheroid of axis ratio a/b=1.01 to 

that on the sphere. The incidence and polarization angles of the plane wave are assumed to be 0˚. The particles have 

the same relative refractive index m̂=1.5. The dashed curve is for the prolate spheroid of semiminor axis length 

equal to the radius of the projection area (r=b) and the dash-dot curve is for the oblate spheroid of semimajor axis 

length equal to the radius of the projection area (r=a). The results are compared with the GLMT’s radiation 

pressure predictions for the sphere of radius r. (1)  Fig. 2.19(a) is for 0.1 µm≤r≤0.8 µm; (2)  Fig. 2.19(b) is for 0.8 

µm≤r≤1.5 µm; (3)  Fig. 2.19(c) is for 1.5 µm≤r≤2.0 µm. 
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         (c) 

Fig. 2.20 Same as  Fig. 2.19  but for the axis ratio a/b=1.1. (1)  Fig. 2.20(a) is for 0.1 µm≤r≤1.0 µm; (2) Fig.20(b) is 

for 1.0 µm≤r≤1.5 µm; (3) Fig.20(c) is for 1.5 µm≤r≤2.0 µm. For clarity and convenient identification, the RPCS 

curves of the prolate and oblate spheroids have been offset by the factors 2×10–12 and –2×10–12, respectively. 

2.4.3.2 Radiation pressure force versus axis ratio 

In the preceding subsection, the axis ratio of the spheroid is taken to be constant and the 

behavior of the RPCS curves versus the particle size is discussed. In this subsection, the volume 

of the particle is given and kept constant during the deformation of a spherical particle to a 

spheroidal one. In this way, we numerically simulate the experiment of the “Optical Stretcher” 

(Guck et al., 2000) for a RBC acted on by two end-on incident counter-propagating Gaussian 

beams of TEM00 mode. These two beams are identical except for the opposite propagation 

directions. The RBC is located where beam sections are identical. Provided that the hemoglobin 

filled in the soft RBC is incompressible, its volume will not change in the process of 

deformation. 

As described by Guck et al. (2000), such a spherical RBC of radius r=3.32 µm (volume 

V0=153.3 µm3) and refractive index 2m̂ =1.380 is in a buffer of refractive index 1m̂ =1.335. A 

cw-Ti: sapphire laser is used to produce the beam of wavelength λ0=0.785 µm. The beam is 

assumed to be extremely focused to the waist radius w0=0.5λ0 and its center OB is located on the 

z axis. The ratio of the local waist radius to the particle radius is 1.10 (w/r=1.10). We calculate 

the RPCS for the axis ratio 1.00≤a/b≤1.23, corresponding to the linear expansions along the z 
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axis of 0≤∆z0≤0.8 µm and the linear contraction along the y axis of 0≤∆y0≤0.6 µm (Guck et al., 

2000). As indicated by the solid curve in  Fig. 2.21, the longitudinal RPCS, Cpr, z, presents a 

linearly increasing relationship with the growth of the axis ratio a/b. Its absolute value rises 

from 3.45×10–15 m2 for a/b=1.00 to 4.17×10–15 m2 for a/b=1.23. This means that for an “Optical 

Stretcher” with a given beam power, the RPF exerted on the RBC gradually increase by 20% 

when it is deformed from a sphere to a prolate spheroid of a/b=1.23. Since a normal RBC has 

the radius between 3 µm and 4 µm, in  Fig. 2.21, we also plot the RPCS curves for the RBCs of 

the radii r=3.00 µm, 3.64 µm, and 3.96 µm, respectively. These cells are still assumed to be 

located at the position w/r=1.1. Their RPCS curves show a similar increase. Therefore we may 

suppose that, in the experiment of the “Optical Stretcher” using extremely focused beams, the 

linear deformation of a spherical RBC is not only the contribution of the beam power increasing 

but also the contribution of particle shape changing itself during the deformation. 
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Fig. 2.21 Longitudinal RPCS versus the axis ratio for a red blood cell (RBC) of radii 3.00, 3.32, 3.64 and 3.96 µm, 

located on the beam axis with the location characterized by w/r=1.1. The RBC of refractive index 1.380 is in the 

buffer of refractive index 1.335, and is deformed from the spherical shape to the spheroidal one under the action of 

two counter-propagating laser beams in the TEM00 mode. The volume of the particle remains constant during the 

deformation. The circular Gaussian beam has a waist radius w0=0.5λ. Note that Cpr, z plotted in  Fig. 2.21 represents 

the RPCS of beam A, which propagates in the direction of the positive z axis. The incidence and polarization angles 

of the beams are Θbd=Фbd=0. Beam B, which has the same axis as Beam A but opposite propagation direction, has 

RPCS of same value as Beam A but with opposite sign. 

Note should be paid to the fact that, for the RBC of radius 3.32 µm, when the linear expansion 

along the z axis (∆z0=2∆a) increases from 0 to 0.8 µm and the linear contraction along the y axis 
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(∆y0=2∆b) increases from 0 to 0.6 µm (corresponding to a/b=1.23), the volume of the particle 

decreases from the original value V0=153.3 µm3 to V1=142.1 µm3, which means the deviation 

error increasing from 0% to 7.3%. This is contradictory to the constant volume assumption 

during the deformation and means that the spheroidal model is more appropriate for a slightly 

deformed RBC. It has been found that (Guck et al., 2001),  when a RBC deviates much from the 

spherical shape, only its two ends possess the shape partly similar to their counterparts of a 

spheroid, while the shape of its middle part is more approximate to a cylinder of finite length. 

Therefore it can be expected that the less a cell deviates from the spherical shape, the better it 

can be modeled by the spheroid. 

2.4.3.3 Radiation pressure force versus incidence and polarization angles 

For a sphere, due to its spherical symmetry, once it is located on the beam axis the RPF keeps 

constant in the beam propagation direction for all incidence angles Θbd and polarization angles 

Фbd. However, in general this is not the case for the spheroidal particle due to its unique 

symmetrical axis along the z axis. Further on, at an oblique incidence angle, different 

polarization angles also imply different ray trajectories inside the spheroid so that the resultant 

RPF should change accordingly. In this subsection we exemplify the influence of both incidence 

and polarization angles of the beam on the RPF exerted on a spheroid. When the spheroid with 

an arbitrary location and orientation in the beam moves toward the beam center OB, rotation 

might happen. In this case, we need to evaluate the RPF versus the angles Θbd and Фbd, 

respectively. 

First, let a TEM00 circular Gaussian beam incident on a prolate spheroid at different incidence 

angles within [0˚, 90˚]. Such a range is representative for the characterization of the influence of 

the incidence angle on the RPF. The RPCS for 90˚≤Θbd≤180˚ is identical to its counterpart 

corresponding to 180˚–Θbd except for an opposite sign for Cpr, z. And the RPCS for –

180˚≤Θbd≤0˚ is identical to its counterpart corresponding to –Θbd, except for an opposite sign for 

Cpr, x. A Gaussian beam of waist radius w0=2λ is used for numerical calculations. The 

polarization angle of the beam is assumed to be 0˚ (Фbd =0˚). The semiminor axis length and the 

axis ratio of the spheroid are equal to 0.5 µm and 2.0, respectively. The centers of the beam and 

the spheroid are assumed to coincide with each other so that OB has the coordinates x0=y0=z0=0 
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µm in OP-xyz. As can be found in  Fig. 2.22a, the components of RPCS Cpr, z and Cpr, x change 

obviously with the incidence angle Θbd and have the maxima 3.4×10–13 m2 and 5.6×10–13 m2, 

respectively, corresponding to the end-on incidence (Θbd=0˚) and side-on incidence (Θbd=90˚) 

are concerned, respectively. Meanwhile, Cpr, z and Cpr, x are identical to zero at Θbd=90˚ and 0˚, 

respectively, as it should. The resultant RPCS, which is calculated from Cpr, z and Cpr, x by using 

2 2
pr, resultant pr, pr, x zC C C= + (Cpr, y=0 for the current case),  also changes with the incidence angle 

and has its maximum 6.0×10–13 at ~48˚.  
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(a)                                                                                                  (b) 

Fig. 2.22 RPCS versus the incidence angle Θbd. The polarization angle Фbd is assumed to be 0. The circular Gaussian 

beam of waist radius w0=2λ is assumed to illuminate a prolate spheroid of axis ratio a/b=2.0, with semiminor axis 

length b=0.5 µm and relative refractive index m̂=1.5. Note that Cpr, y is equal to zero and hence its curve is not 

plotted. (1): In  Fig. 2.22(a) is plotted the RPCS curve versus Θbd, including the longitudinal component of RPCS 

Cpr, z, the transverse one Cpr, x, as well as the resultant one; (2): In  Fig. 2.22(b) is plotted the direction of the resultant 

RPF (in OP-xy plane) exerted on the spheroid. Note that θ is formed by the direction of the resultant RPF and the 

positive z axis, while Θbd is formed by the beam propagation direction and the positive z axis. 

Thus, we can conclude that the RPF value does not keep constant for the different incidence 

angles. Neither does its direction, as can be found in  Fig. 2.22b: except for their equalities for 

the end-on or side-on incidences of the beam (Θbd=0˚ or 90˚), the angle formed by the direction 

of the RPF and the z axis, θRPF, is always larger than incidence angle of the beam, Θbd. As 

evidenced by other numerical results not demonstrated in the present thesis, we comment that 
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the more a spheroid deviates from the sphere, the more the RPCS curve is influenced by the 

incidence and polarization angles.  

Next, we study the influence of the polarization angle on the result of RPCS for the same 

particle and beam. With incidence angles 0˚, 22.5˚, 45˚, 67.5˚ and 90˚, the polarization of the 

incident wave changes from the TM mode (Фbd =0˚) to the TE mode (Фbd =–90˚). In such a 

process, the RPCS curves of Cpr, z, Cpr, x, and Cpr, y versus the polarization angles are illustrated in 

 Fig. 2.23a, b and c, respectively. Evidently, when Θbd=0˚, Cpr, z keeps constant for all 

polarization angles, due to the rotational symmetry of the spheroid around its semimajor axis. 

Cpr, z becomes zero when the beam is tilted to the incidence angle 90˚, since in this case the 

beam propagates along the x axis in the Cartesian coordinates of the spheroid. For the incidence 

angle Θbd=22.5˚, Cpr, z shows a monotone increasing relationship with the growth of the 

polarization angle Фbd. Such a tendency of increasing slows down for Θbd=45˚. When Θbd=67.5˚, 

the pr, zC  curve versus Фbd becomes monotone decreasing. As to Cpr, x, it grows gradually with 

the increase of Фbd for all incidence angles except when Θbd=0˚, which corresponds to the end-

on incidence of the beam when no transverse forces exist. Interestingly enough, the Cpr, y-Фbd 

curve presents a parabolic shape for the incidence angles Θbd=22.5˚, 45˚, and 67.5˚. The 

maximum of Cpr, y locates stably at Фbd=–45˚, as can be found in  Fig. 2.23c. But for the end-on 

incidence (Θbd=0˚) or side-on incidence (Θbd=90˚), Cpr, y is equal to zero at all polarization 

angles. Considering the ray optics viewpoint, this is because the two geometrical rays at the 

same polarization plane and symmetrical about the beam axis have symmetrical trajectories 

inside the particle so that they produce no forces in the y direction. For other incidence angles, 

Cpr, y still keeps zero at the polarization angles Фbd=0˚ and –90˚, since in these cases two 

symmetrical incident rays respectively located at the left and right sides of OP-xz plane can still 

be found propagating symmetrically inside the spheroid so that eventually no forces are 

produced in the y direction. However, for a given incidence angle 0˚<Θbd<90˚ and at the other 

polarization angles –90˚<Фbd<0˚, such a symmetrical propagation does not exist any longer, 

therefore Cpr, y happens to be non-zero.  

Note should be paid to the fact that the RPCS for 0˚≤Фbd≤90˚ is identical to its counterpart 

corresponding to –Фbd. Also, the RPCS for 90˚≤Фbd≤180˚ and –180˚≤Фbd≤–90˚ is identical to its 
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counterpart corresponding to –Фbd.  
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(c) 

Fig. 2.23 RPCS versus the polarization angle Фbd for 5 incidence angles Θbd=0˚, 22.5˚, 45˚, 67.5˚ and 90˚. The beam 

and the spheroid are the same as in  Fig. 2.22. In  Fig. 2.23(a), (b) and (c) are plotted the curves of Cpr, z, Cpr, x and Cpr, 

y versus Фbd, respectively. For Θbd=0˚, Cpr, x and Cpr, y are zero and therefore their curves are not explicitly found in 

the figures. 

2.4.3.4 Radiation pressure force versus beam center location 

For on-axis location of the spheroid, under the action of the longitudinal RPF the spheroid is 

attracted toward the beam center. In such a process, we need to explore the influence of beam 
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center location OB (x0, y0, z0) on the RPCS. First, we discuss the case of end-on incidence of the 

beam. In this case, the beam center OB is located on the z axis so that x0=y0=0 µm. We consider 

a Rayleigh particle (r<<λ) of r=0.01 µm as an example, which is representative of RPCS 

prediction for Rayleigh particles. For both spherical and spheroidal particles of the same 

projection radius r and illuminated by an end-on incident circular Gaussian beam of waist radius 

ω0=λ and its electric field polarized in OP-xz plane, the Cpr, z curves versus z0 show a 

symmetrical shape about the point with z0=0 µm and Cpr, z is almost zero, as can be found in  Fig. 

2.24. Meanwhile, the absolute value of longitudinal RPCS (|Cpr, z|) of the oblate/prolate spheroid 

is smaller/larger than that of the sphere and increases/decreases with the growth of the axis ratio 

from 1.0 to 1.2. These axis ratios can be considered caused by an “Optical Stretcher”, which is 

discussed in Subsection  2.4.3.2. Such a phenomenon is observed for very small particles within 

the Rayleigh size range. However, the discrepancy becomes evident for the particles of the size 

beyond the Rayleigh region. For example, when r=1.0 µm, |Cpr, z| at almost all z0 decreases with 

the growth of the axis ratios from 1.0 to 1.10, as indicated by  Fig. 2.25. Also, at relatively far 

location of the beam center OB from the particle center OP (say, |z0|>20 µm), the curvatures of 

the beam wavefronts at +|z0| and –|z0|, which correspond to the particle located at the converging 

or diverging parts of the beam, respectively, are weak enough to be looked on as being identical. 

Therefore the Cpr, z curve is found symmetrical with respect to the axis z0=0 µm.  
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Fig. 2.24 Longitudinal RPCS versus the location of Rayleigh particle along the z axis. The circular Gaussian beam has 

a waist radius w0=λ. The spheroids have the relative refractive index m̂=1.5 but different axis ratios a/b=1.1 and 

1.2 respectively. The projection radius of the particles is assumed to be r=0.01 µm so that we have r=b for the 

prolate spheroid and r=a for the oblate one. The incidence and polarization angles of the beams are Θbd=Фbd=0. 
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Fig. 2.25 Longitudinal RPCS versus particle location along the z axis. The circular Gaussian beam has a waist radius 

w0=2λ. The spheroids have the same relative refractive index m̂=1.5 but the different axis ratios a/b=1.05 and 1.10, 

respectively. The projection radius of the particles is assumed to be r=1.0 µm so that we have r=b for the prolate 

spheroid and r=a for the oblate one. The incidence and polarization angles of the beams are Θbd=Фbd=0. 

Next, we discuss the case of off-axis incidence of a beam on a spheroid. The beam center OB is 

at the plane z0=0, but it does not coincide with the particle center OP, namely x0≠0 or y0≠0. A 

circular Gaussian beam of waist radius w0=2λ, with the incidence and polarization angles 

bd bd 0Θ = Φ =  illuminates spheroids of the same projection radius r=1.0 µm but the different 

axis ratios a/b=1.00, 1.01, and 1.10. Since the beam center is located along the x axis, we have 

y0=z0=0 µm. In this case, the longitudinal and the transverse RPCS curves, Cpr, z and Cpr, x versus 

x0, are plotted in  Fig. 2.26a and  Fig. 2.26b respectively. Also, for the beam center located along 

the y axis (x0=z0=0 µm), results of Cpr, z and Cpr, y are plotted in  Fig. 2.27a and  Fig. 2.27b. We 

can find from  Fig. 2.26a and  Fig. 2.27a that, for the same projection radius r=1.0 µm the 

longitudinal pressures exerted on the spheroids of axis ratio a/b≤1.1 are less than those exerted 

on the sphere when the beam center OB is not close enough to the particle center OP, say x0≥0.32 

µm for Cpr, x and y0≥0.40 µm for Cpr, y. Meanwhile, as indicated by  Fig. 2.26b and  Fig. 2.27b, the 

transverse pressures exerted on the spheroids are less than those exerted on the sphere once the 

beam center does not locate far enough from the particle center, say 0≤x0≤1.75 µm for Cpr, x and 

0≤y0≤1.65 µm for Cpr, y.  
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(a)                                                                        (b) 

Fig. 2.26 Transverse RPCS Cpr, x versus the beam center location along the positive x axis. The circular Gaussian 

beam of a waist radius w0=2λ is assumed to be incident on spheroids of same relative refractive index m̂=1.5 but 

with different axis ratios a/b=1.00, 1.01, and 1.10 respectively. The beam center locates on the x axis so that 

y0=z0=0 µm. The incidence and polarization angles of the beam are Θbd=Фbd=0. The projection radius of the particle 

is r=1.0 µm. (1):  Fig. 2.26(a) is for the longitudinal RPCS Cpr, z versus x0; and (2):  Fig. 2.26(b) is for the transverse 

RPCS Cpr, x versus x0. Attention should be paid to the fact that, in the current case, another transverse RPCS, Cpr, y, 

is zero and its curve is not plotted.  
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                                        (a)                                                                          (b) 

Fig. 2.27 Same as  Fig. 2.26 but for the transverse RPCS Cpr, y versus the beam center location along the positive y axis. 

The beam center OB locates on the positive y axis so that x0=z0=0 µm. (1):  Fig. 2.27(a) is for the longitudinal RPCS 

Cpr, z versus y0; and (2):  Fig. 2.27(b) is for the transverse RPCS Cpr, y versus y0. Attention should be paid to the fact 

that, in the current case, another transverse RPCS, Cpr, x, is zero and its curve is not plotted. 
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When the volatile oil is polluted or contains some impurities, the refractive index might have a 

non-zero imaginary part. In this case, the influence of the refractive index on RPCS should be 

examined. We use an astigmatic elliptical Gaussian beam (Xu et al., 2006a) of waist radii along 

u and v directions being λ and 10λ respectively (w0u=λ and w0v=10λ). The locations of the waist 

radii along the u and v axes are –0.5 µm and 0.5 µm, respectively (wu=–0.5 µm and wv=0.5 µm). 

The beam is assumed to be incident on a prolate spheroid of axis ratio a/b=1.5 and semiminor 

axis length b=1.0 µm. The real part of the refractive index of the prolate spheroids is 1.5 

( ˆRe( ) 1.5m = ) and its imaginary part ˆIm( )m  increases from 0 to 0.1 by steps. For these 

parameters, we observe a gradual increase of Cpr, z in  Fig. 2.28. However, when ˆIm( )m  further 

grows to 1.0, a decrease is observed. Since the influence of the imaginary part of the refractive 

index on the behavior of the RPCS curves versus z0 has been found similar to the one for the 

Cabs curves, the explanation can be as follows: when more (less) energy is absorbed by the 

particle, more (less) angular momentum is transferred to the particle so that the longitudinal 

RPCS becomes larger (smaller).  
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Fig. 2.28 Longitudinal RPCS versus z0 for a prolate spheroid of axis ratio a/b=1.5 and semiminor axis length b=1.0 

µm illuminated by an astigmatic elliptical Gaussian beam of waist radii along u and v directions being λ and 10λ, 

respectively (w0u=λ and w0v=10λ). The locations of the waist radii w0u and w0v are –0.5 µm and 0.5 µm, respectively 

(wu=–0.5 µm and wv=0.5 µm). The incidence and polarization angles of the beam are  Θbd=Фbd=0.The five curves in 

 Fig. 2.28 correspond to spheroids of different refractive indices m̂=1.5, 1.5+0.001i, 1.5+0.01i, 1.5+0.1i, and 1.5+i. 
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2.5 Conclusion 

By solving the equations obtained from the boundary conditions, the unknown coefficients for 

scattered and internal fields are determined. Analytical expressions for the calculation of 

extinction, scattering and radiation pressure crosssections are obtained and demonstration 

calculations are made. Two special cases, plane wave scattering by a spheroid and shaped beam 

scattering by a sphere are proved recoverable from the present theory.  

Through coordinate transformation, the beam description in its own Cartesian coordinates can 

be converted to that in the coordinates of the spheroid. Afterward the arbitrarily oriented and 

shaped beam is successfully expanded in terms of spheroidal vector wave functions multiplied 

by a set of spheroidal BSCs. However, these BSCs have to be evaluated by the quadrature 

method instead of the localized principle once the coordinates of the beam and the particle are 

not parallel to each other. The spheroidal BSCs calculated by our method are comparable to 

those obtained by Asano and Yamamoto for the case of plane wave incidence. For the special 

case of the beam coordinates parallel to those of the particle, all the symmetry relationships for 

spherical BSCs also stand for spheroidal ones. On the basis of beam expansion, arbitrarily 

oriented shaped beam scattering by a spheroid are studied.  

To our particular interest might be the numerical calculations of RPF performed for both prolate 

and oblate spheroids illuminated by plane wave or circular/elliptical Gaussian beam. When 

studying the influence of particle shape on the RPF, we compare the results of RPCS of the 

spheroids to those of the spheres. For the plane wave incidence, the RPCS curve versus the 

particle size for a prolate spheroid is found to have a back- and downward shift when compared 

to the RPCS curve for a sphere. Such a shift becomes up- and forward for an oblate spheroid of 

the same axis ratio as that of the prolate one. Moreover, the resonance strength of the 

oblate/prolate spheroid is stronger/weaker than that of the sphere. Also, when the particle is 

located on the beam axis, the resultant RPF exerted on the spheroid, unlike on the sphere, is not 

always along the beam propagation direction denoted by the incidence angle Θbd. Furthermore, 

its value does not remain constant. In addition, altering the polarization angle can also bring 

changes to the RPF for a beam of oblique incidence (Θbd≠0˚). By use of the present theory, our 

numerical simulation of the “Optical Stretcher” indicates that, during the deformation of a RBC 
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acted on by two extremely focused TEM00 beams with w0=0.5λ and given beam power, the 

longitudinal RPF exerted on the cell with its location in the beam characterized by w/r=1.1 

linearly increases by 20% when it is deformed from a spherical particle to a spheroidal one 

having an axis ratio a/b=1.23. 
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Chapter 3.   Geometrical Optics Approximation of Gaussian Beam 

Scattering by a Spheroid 

In the preceding chapter, the generalized Lorenz-Mie theory (GLMT) has been developed to 

describe the interaction between a laser beam and a spheroid. It proves to be a complete and 

exact solution to Maxwell’s equations and can serve as rigorous theoretical basis for optical 

particle characterization. However, as stated in Chapter 1, when the projection radius of the 

spheroid is larger than ~5 µm (r≥~5 µm) or the axis ratio is larger than ~3 (a/b≥~3), such a 

theory can be hardly applied to practical calculations ascribed to the poor convergence of radial 

spheroidal functions of the second kind for large aspect ratio or large size. Furthermore, for a 

relatively large particle, to ensure the precision of calculation, a large but ill-conditioned 

coefficient matrix is required to determine the unknown coefficients from boundary conditions, 

which might invoke numerical instabilities in solving the linear equations. In the face of such a 

difficulty, geometrical optics (GO) is expected to work instead of the rigorous theory due to its 

advantages of more straightforward treating of scattering phenomenon and much higher 

efficiency in numerical calculations.  

As a kind of shaped beam, the Gaussian beam of fundamental mode (TEM00) found most 

applications in laser particle characterization. For its on-axis incidence on a sphere or a spheroid, 

the complex amplitude of its electric field is rotationally symmetric around the z-axis, which is 

also the rotationally symmetric axis of the sphere and the spheroid. In this case, mathematics for 

three-dimensional ray tracing inside them can be simplified to two-dimensional. In this chapter, 

we first study circular Gaussian beam scattering by a spherical particle and compare the results 

with GLMT’s prediction for a sphere. On such a basis, GO approximation is further extended to 

the case of a spheroidal particle.  

3.1 Gaussian beam scattering by a sphere 

This subsection is devoted to the extension of the geometrical optics approximation to the light 

scattering of an on-axis Gaussian beam by a spherical particle. In this instance, the TE and TM 

polarizations always stay separate and there is no polarization mixing upon successive internal 
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reflections. It is an important basis for a further extension to the light scattering by a large 

spheroid, which is discussed in Subsection  3.2.  

3.1.1 Extension of geometrical optics approximation 

We consider that a TEM00 Gaussian beam, of waist radius w0, wavelength λ0 in vacuum, and 

polarized in the x direction, propagates along the z axis. Its center OG is located at (0, 0, z0) in 

the particle coordinate system OP-xyz (see  Fig. 3.1). The radius of the spherical particle is r and 

relative complex refractive index is m̂ =mr+mii .  

 

Fig. 3.1. Scheme of GO of a homogeneous sphere illuminated by a Gaussian beam. The particle is located on the z 

axis of the incident beam. (The points B, D, and F are on an isophase of the beam). 

In the first-order approximation, the complex amplitude of the electric field of the incident 

Gaussian beam (designated by the subscript G) GS  at any point A(x, y, z) is described by 

(Siegman, 1986): 

 ( )( , , ) expG G iS x y z S iφ= , (3-1)

where GS  and iφ  denote the amplitude and the phase of the Gaussian beam, which are given, 

respectively, by 
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2i
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φ − ⎛ ⎞⎡ ⎤ −+
= − − + + ⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
, (3-3)

where kI (kI=2π/λI) is the wavenumber in the surrounding medium; the local beam radius w is 

related to the beam waist radius w0 by ( ){ }1/ 22
0 01 / Rw w z z z= + −⎡ ⎤⎣ ⎦ , the wavefront curvature 

radius R and the Rayleigh length Rz  read, respectively, as ( ) ( ){ }2
0 01 /RR z z z z z= − + −⎡ ⎤⎣ ⎦  and 

2
0 I/Rz wπ λ= . 

Within the framework of GO, the scattered field Sj can be calculated by a superposition of the 

contributions of all modes of rays, including the specularly reflected rays, Sj,0, the refracted rays 

of order p, Sj,p, which undergo p–1 internal reflections as well as the diffracted field Sd, i.e., 

 ,
0

j d j p
p

S S S
∞

=

= +∑ , (3-4)

where the subscript j is 1 or 2, indicating, respectively, the component perpendicular (φ=90˚) or 

parallel (φ=0˚) to the scattering plane. The far-field scattering intensity Ij at an observation point 

with distance Rs from the particle center is calculated by:  

 
20 0

2 2
I I

( ) ( )
( ) ( )j j j

s s

I II i S
k R k R

θ θ= = , (3-5)

where 0I  is the intensity at the center of the Gaussian beam.  

3.1.1.1 Diffraction of a Gaussian beam 

To consider the diffraction effect, we use the model of Chevaillier et al. (1986, 1990) for 

Gaussian beam diffraction by a disk of radius r.  On the basis of their work, the amplitude of the 

diffracted field by a spherical particle of size parameter α=kIr in far field can be obtained from 
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the following compact formula:  
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, tan cos( ')B α θ ϕ ϕ= − −  and 
2

I2
C

k R
α

= . When A is small, i.e., the radius of 

the particle is smaller than the local beam waist radius (r≤w), the integral equation in Eq.(3-6) 

can be evaluated analytically through using Legendre polynomial approximation (Chevaillier et 

al., 1986). However, in our calculation, the integral of Eq.(3-6) is directly evaluated numerically 

to remove the limitation of r≤w. 

3.1.1.2 Propagation of the rays of Gaussian beam  

Within the framework of GO, the Gaussian beam is considered as a combination of bundles of 

rays, each of them propagates in the direction F
uv

 normal to the local wavefront surface of the 

incident beam. With the aid of the phase function iφ  described by Eq.(3-3), F
uv

 can be 

represented by the partial derivatives Fx, Fy, and Fz of iφ : x y zF F i F j F k= + +
uv vv v

. For the special 

case of on-axis incidence, due to the axial symmetry of the Gaussian beam, the propagation 

direction of the rays at any point on the OP-yz plane can be simplified to (Fy, Fz), and the 

incidence angle θi on the sphere ( Fig. 3.1) is then obtained by 

 2 2 2 2
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y z
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y z
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y z F F
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+
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+ +
, (3-7)

where yF  and zF  read as: 
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The angle β between the z axis and the propagating direction of the ray incident on point A is 
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then determined by 1tan y

z

F
F

β − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. The total deviation of a ray of order p from the z axis can be 

evaluated by 

 2 2 ( 1)p rp pθ θ τ π β′ = − − − + , (3-10)

where θr is the refraction angle and can be related to the incidence angle θi by Snell’s law, while 

τ  is the angle between vector PBO
uuuuv

 and the z axis. So we have the relation τ=β+θi. All these 

angles are illustrated in  Fig. 3.1. Obviously, when beam waist radius w0 tends to infinity (the 

angle β tends to 0 and iθ τ= ) the special case of plane wave incidence is recovered. 

The scattering angle for a ray of order p, θp , is related to the total deviation angle pθ ′  by 

 2p p p pk qθ π θ′ = + , (3-11)

where kp  is an integer and qp is equal to 1 or –1. The values of pk  should be properly chosen so 

that the scattering angle θp is well restricted within the range [0, π]. 

3.1.1.3 Phase shifts 

Within the framework of GO approximation of the plane wave scattering by a spherical particle, 

two kinds of phase shifts should be taken into account: the phase shift due to the optical path 

,p PHφ  and the phase shift due to the focal lines (inside and outside the sphere) ,p FLφ . Thus the 

final combined phase shift pφ can be expressed as (van de Hulst, 1957): 

 , , ,2p pl p PH p FL
πφ φ φ= + + , (3-12)

where the first term π/2 in Eq. (3-12) is added only for the sake of convenience in the expression 

of the scattered wave and it has no effect on the scattered field.  

The phase due to the optical path ,p PHφ  relative to the reference for an incident ray (see  Fig. 3.1) 

is given by 
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 , I2 (cos cos )p PH i r rk r pmφ θ θ= − . (3-13)

Following van de Hulst’s discussion (van de Hulst, 1957), the phase advances by π/2 after each 

passage of a focal line, which is formed by intersections of adjacent rays. And for the plane 

wave incidence, the phase shift due to the focal lines reads as 

 ,
1 1( 2 )

2 2 2p FL p pp k s qπφ = − + − , (3-14)

where the definitions of kp and qp are the same as in Eq.(3-11) and s = ( )sgn /p id dθ θ′− .  

However, for a Gaussian beam illumination, the phase shift due to the curvature of the 

wavefront, Gφ , should be taken into account. The phase differences between the phase on the 

front curvature iφ  and the reference points D and E are, respectively, I (1 cos )AB ik rφ θ= −  and 

I 0( )ED ik r zφ φ= + −  (The points B, D, and F in  Fig. 3.1 are on an isophase of the beam). Thus 

the phase shift due to the curvature of the Gaussian wavefront is then: 

 I 0( cos )G AB ED i ik z rφ φ φ φ θ= − = − + . (3-15)

Hence for Gaussian beam illumination, we have the following expression for phase shift 

calculation: 

 , ,2p p PH p FL G
πφ φ φ φ= + + + . (3-16)

We may find that when w0 tends to infinity, iφ  tends to be I 0( )k z z−  and cos iz r θ= − . Then Gφ  

is equal to zero. Hence the case of plane wave incidence is recovered. 

But in the case of Gaussian beam illumination, we find it difficult to deduce an analytical 

expression for ,p FLφ  to count the number of focal lines the ray encounters during its travel inside 

and outside the sphere. Nevertheless, as pointed out by van de Hulst (1957), the intersection of 

two adjacent rays produce a focal point and their foci form the focal lines. Such a criterion also 

holds for Gaussian beam scattering. Therefore a procedure is designed to numerically determine 

the intersections of adjacent rays which produce focal points, both inside and outside the particle. 
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3.1.1.4 Amplitude of scattered field 

When a bundle of rays arrives at the surface of a particle, it is reflected and refracted each time 

it encounters the surface of the sphere, diverged or converged due to the local curvature of the 

surface and the refractive index, and attenuated if the particle is absorbing. 

The factor of the amplitude attenuation due to the reflection and/or the refraction for the 

emergent ray of order p is given by 

 , 2 ( 1)

, for    0

(1 ) , for 1
j

j p p
j j

r p

r r p
ε

−

=⎧⎪= ⎨
− ≥⎪⎩

, (3-17)

where jr  is the Fresnel reflection coefficients calculated by 
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The divergence factor due to the local curvature of the particle is given by 

 
cos sin
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i
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θ
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=
′

. 
(3-20)

When a sphere is illuminated by a plane wave, a simple analytical expression of pd
d
θ
τ
′

 can be 

obtained (Glantschnig and Chen, 1980) since, for plane wave incidence (β=0), pθ′  has an 

explicit relation with τ and θi, as indicated by Eq. (3-10). For Gaussian beam illumination, 

however, β≠0. Moreover, β depends not only on the incident point (defined by τ) but also on the 

focalization of the beam. Therefore it is difficult to obtain the analytical expression for pd
d
θ
τ
′

. 

Instead, pd
d
θ
τ
′

 is numerically evaluated by the following expression for the lth ray: 
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−
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When the particle is absorbing, the amplitude is attenuated during the ray’s propagation inside 

the particle. Since the total optical path inside the particle for a ray of order p is 2 cos rpr θ , the 

attenuation factor ξp can be evaluated by 

 Iexp( 2 cos )p i rk rm pξ θ= − . (3-22)

Taking into account all of these factors, we have the following amplitude of the scattered field 

for a ray of order p at the scattering angle θ: 

 1/ 2
, I ,( ) exp( )j p G j p p G pS k r S D iθ ε ξ φ= . (3-23)

It should be noted that the total scattering amplitude at an observation point is the contribution 

of all emergent rays. Because the incident rays of each order p have their own set of scattering 

angles, to make a final superposition of amplitudes of all orders of the rays at the same 

scattering angles, which is described by Eq.(3-4), one-dimensional piecewise cubic interpolation 

is adopted for unification. 

3.1.2 Numerical results and discussion 

On the basis of the approach described in the preceding Subsection  3.1.1, a code is written in 

MATLAB and has been run on a PC. To validate the method and the code we compare the 

scattering diagrams for a transparent and absorbing sphere calculated by the extended 

geometrical-optics approximation (EGOA) with those by the GLMT and by the Debye series; 

the latter permits to verify the contributions of each order of the rays. The relative deviation 

from the GLMT is quantified for different angle ranges. 

It’s noteworthy that for all the demonstration calculations, to improve the calculation efficiency 

but not lose the approximation precision, the maximum order of rays pmax is chosen to be 20, i.e., 

the refracted rays which undergo less than 20 internal reflections are considered. In addition, the 

incident rays on the surface of upper hemisphere are linearly spaced and their number is chosen 

to be 2500. Such a number gives the same results as done by 5000 rays do and therefore is 
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considered sufficient. 

3.1.2.1 Comparison to the generalized Lorenz-Mie theory  

The EGOA is an approximate method based on ray theory. It permits us to identify the 

contribution of all orders of rays. The GLMT, on the other hand, is an exact solution to the 

scattering of a linearly polarized shaped beam by a dielectric sphere. By comparing the results 

of the two methods, the validation range of the EGOA can be clarified.  

The scattered diagrams for a transparent water droplet located at the centre of a Gaussian beam 

are shown in  Fig. 3.2- Fig. 3.4. The refractive index of the particle is assumed to be 1.333 

( m̂ =1.333) and the wavelength of the incident beam is 0.6328 µm (λ0=0.6328 µm). For clarity 

in the graphic presentation, a relatively small particle of radius r=25 µm is chosen for 

calculation. But we can anticipate the conclusion that the EGOA better predicts the scattered 

field for a larger particle than for a small one. Attention should be paid to that at Descartes 

rainbow angles, the intensity should be infinite due to the stationary deflection of the emergent 

rays.  However, this is not apparent in the figures since numerically the emergent rays’ change 

of deviation angle pdθ ′  at the vicinity of rainbow is small enough but not zero.  
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Fig. 3.2. Comparison of the scattering intensities calculated by the GLMT and the EGOA for a pure water droplet of 

refractive index m̂=1.333 and radius r=25 µm illuminated by a Gaussian beam of waist radius w0=10 µm and 

wavelength λ0=0.6328 µm. The particle is located at the center of the beam (z0=0 µm). 
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Fig. 3.3. Same parameters as  Fig. 3.2 but with the beam waist radius w0=25 µm. 
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Fig. 3.4. Same parameters as  Fig. 3.2 but with the beam waist radius w0→∞. 

 Fig. 3.2 shows that when the radius is small compared with the beam waist radius, the 

agreement of the EGOA and the GLMT is satisfactory in all the directions from 0˚ to 180˚. 

When the radius of the particle is as large as ( Fig. 3.3) or greater than ( Fig. 3.4) the beam waist 

radius the discrepancy between the two methods appears. The discrepancy at the angles around 

the rainbow and the angles at the vicinity of 90˚ increases as the ratio of the waist radius to the 

particle radius grows. Such a phenomenon can be explained by the fact that when the beam 

radius is smaller than the radius of the particle, the intensity of the rays corresponding to the 

lower-order rainbows is very weak. Meanwhile, the intensity of the rays adjacent to the edge of 
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the particle and associated with surface wave is also weak. Thus the effect of surface wave is 

also negligible. Therefore, the EGOA predicts the scattering intensity well. But when the beam 

waist increases to be comparable or larger than the particle radius, the intensity of the rays 

responsible for the rainbows and the surface wave has more important contribution to the 

scattered fields. In such a situation, the EGOA can not predict the scattering intensity well at 

relevant angles. 

The EGOA is also valid for slightly absorbing particles. In  Fig. 3.5 to  Fig. 3.6 we show 

respectively the scattered diagrams of a polluted water droplet ( m̂ =1.333+0.01i) and an urban 

aerosol particle ( m̂ =1.55+0.09i) (Shettle and Fenn, 1979). In order to compare with the results 

in  Fig. 3.2, the radii of the beam waist and the particle are taken to be the same as those in  Fig. 

3.2. Good agreement between the EGOA and the GLMT is found except for small difference at 

the Brewster angle for the urban aerosol sphere. It is worth noting that the oscillation of the 

scattering pattern at large angles is much flattened in these diagrams since the intensities of high 

order rays are attenuated by the absorption of the particle, thus the effect of interference between 

the externally reflected rays and the rays of other orders is very weak. An example in the regime 

of anomalous diffraction is also given in  Fig. 3.7, where the refractive index of the particle m̂  is 

1.02 while other parameters are same as those in  Fig. 3.2. The coincidence between the results 

of the GLMT and the EGOA are still found satisfactory.  
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Fig. 3.5. Same parameters as  Fig. 3.2, but with m̂=1.333+0.01i. 
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Fig. 3.6. Same parameters as  Fig. 3.2, but with m̂=1.55+0.09i. 
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Fig. 3.7. Same parameters as  Fig. 3.2, but with m̂=1.02. 

To qualify the validity range of the EGOA in different parameter set of (r, w0, z0, m̂ ), we 

compare the energy flux calculated by the EGOA with that by the GLMT within different 

scattering angular ranges for transparent particles and absorbing ones. To this end, we define the 

relative deviation δr of the EGOA to the GLMT as the ratio of discrepancy of the flux calculated 

by the two methods in the same angular interval [ ]1 2, θ θ  to the flux calculated by the GLMT in 

this interval: 
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 GLMT EGOA
r

GLMT

100%δ Φ −Φ
= ×

Φ
. (3-24)

We define the absolute deviation δa as the discrepancy of the flux calculated by the two methods 

for a given angular internal [θ1, θ2] relative to the total scattered flux: 

 GLMT EGOA
a

total

100%δ Φ −Φ
= ×

Φ
, (3-25)

where Φ  indicates the energy flux of the unpolarized light and is calculated by 

 2

1

2  I 0
1 2 

[ ( ) ( )]sin
4

I i i d
θ

θ

λ θ θ θ θ
π

Φ = +∫ , (3-26)

and totalΦ  indicates the total flux from 0˚ to 180˚. 

The absolute and the relative discrepancies between EOGA and GLMT for a water droplet 

located at the centre of a Gaussian beam of wavelength λ0=0.6328 µm are presented in  Table 

3.1- Table 3.2. The first remark made by us is that the absolute discrepancy is very small except 

in the near forward direction because ~90% of scattered energy is concentrated in the forward 

angular range from 0 to 200/α degrees for a particle of radius approximately more than five 

times the wavelength. Therefore, the relative discrepancy should be used to evaluate the 

deviation of the EGOA from the GLMT. Comparing  Table 3.1 with  Table 3.2, we can find that 

the deviation between EGOA and GLMT is smaller for a larger particle in most angular 

intervals except the near forward region (0˚-20˚). This means that, generally, for the same radius 

ratio 0w /r, a better approximation is achieved by the EGOA for a larger particle than for a 

smaller one. Meanwhile, for a transparent particle, the best agreement can be found when the 

beam waist radius is nearly half of the particle radius. The disagreement becomes obvious in the 

rainbow region or at angles around 90˚. Such a deviation is mainly caused by two well-known 

reasons: The geometrical rays shut down near the rainbow angle and the so-called surface wave 

is not within the capability of ray optics for the description of scattering and has not been taken 

into account in our calculation. Its influence will be further analyzed in the next section. 

However, when the particle is absorbing, the deviations in the middle and backward regions of 

(60˚-180˚) are not evident, as indicated by comparing  Table 3.2 with  Table 3.3. In these two 
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tables the imaginary parts of the refractive indices of the 100 µm particle are 0 and 0.005, 

respectively. We can also find that for absorbing particles, better approximation within [0˚, 20˚] 

can be achieved since it corresponds better to the opaque disk model used in the diffraction 

calculation. 

Table 3.1 Absolute and relative discrepancies δa and δr (expressed in percentage) between EGOA and GLMT for a 

pure water droplet of m̂=1.333, r=25 µm, z0=0 µm, and λ0=0.6328 µm. 

Absolute Discrepancy δa relative discrepancy δr 
Beam waist 

0˚-20˚ 20˚-60˚ 60˚-90˚ 90˚-
120˚

120˚-
150˚

150˚-
180˚ 0˚-20˚ 20˚-60˚ 60˚-90˚ 90˚-

120˚ 
120˚-
150˚ 

150˚-
180˚

w0=r/4 5.34 0.00 0.00 0.00 0.01 0.07 5.52 3.76 15.69 4.80 4.02 2.23

w0=r/2 4.21 0.01 0.00 0.00 0.03 0.00 4.43 0.29 2.35 0.28 5.32 0.04

w0=r 1.69 0.16 0.12 0.02 0.13 0.05 2.17 0.87 15.50 6.99 9.10 6.38

w0=2r 1.47 0.36 0.29 0.06 0.16 0.12 2.10 1.42 20.20 16.30 8.37 19.02

w0→∞ 1.54 0.46 0.38 0.08 0.17 0.16 2.29 1.66 21.71 21.00 7.58 25.15

Table 3.2 Same as  Table 3.1, but with r=100 µm. 

Absolute Discrepancy δa relative discrepancy δr 
Beam waist 

0˚-20˚ 20˚-60˚ 60˚-90˚ 90˚-
120˚

120˚-
150˚

150˚-
180˚ 0˚-20˚ 20˚-60˚ 60˚-90˚ 90˚-

120˚ 
120˚-
150˚ 

150˚-
180˚

w0=r/4 9.27 0.00 0.00 0.00 0.00 0.00 9.48 0.16 1.06 0.14 0.23 0.16

w0=r/2 4.42 0.00 0.00 0.00 0.00 0.00 4.65 0.01 1.29 0.01 0.44 0.01

w0=r 4.05 0.03 0.05 0.01 0.10 0.02 5.26 0.16 7.32 3.01 7.40 3.26

w0=2r 2.47 0.06 0.12 0.02 0.16 0.05 3.48 0.23 9.38 7.31 8.79 9.81

w0→∞ 3.23 0.07 0.15 0.03 0.19 0.07 4.71 0.26 10.04 9.60 8.91 13.18
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Table 3.3 Same as  Table 3.2, but with m̂=1.333+0.005i. 

Absolute Discrepancy aδ  relative discrepancy rδ  
Beam waist 

0˚-20˚ 20˚-60˚ 60˚-90˚ 90˚-
120˚

120˚-
150˚

150˚-
180˚ 0˚-20˚ 20˚-60˚60˚-90˚ 90˚-

120˚ 
120˚-
150˚ 

150˚-
180˚ 

w0=r/4 0.21 0.00 0.00 0.00 0.00 0.00 0.21 1.05 0.26 0.30 0.25 0.21

w0=r/2 3.57 0.00 0.00 0.00 0.00 0.00 3.64 0.40 0.03 0.03 0.03 0.03

w0=r 3.33 0.01 0.00 0.00 0.00 0.00 3.44 0.75 0.02 0.02 0.02 0.02

w0=2r 0.86 0.02 0.00 0.00 0.00 0.00 0.90 0.86 0.02 0.02 0.02 0.02

w0→∞ 2.52 0.02 0.00 0.00 0.00 0.00 2.65 0.89 0.02 0.02 0.02 0.02

Attention should be paid to the fact that when the radii ratio w/a is small, typically less than one 

fourth, the deviation between the EGOA and the GLMT becomes significant for a relatively 

small particle ( Table 3.1). This is caused by two reasons. With respect to GLMT, when the 

beam is tightly focused, its profile described by GLMT that one is no longer same as the original 

profile. Some discrepancies appear between the non-Maxwellian description of the incident field 

by Davis’s first-order approximation (Davis, 1979) and the reconstructed Maxwellian field from 

the beam-shape coefficients evaluated by the localization approximation, which might leads to 

some discrepancy between the reconstructed field and the given Gaussian beam field (Gouesbet 

and Lock, 1994; Lock and Gouesbet, 1994). With respect to the EGOA, ray theory is not 

quantitatively accurate for small particles and the assumption of a three-dimensional sphere to a 

two-dimensional disk in diffraction theory (Chevaillier et al., 1986, 1990) and non-inclusion of 

the surface wave rays, tunneling rays as well as the complex rays also bring in some errors to 

the scattering calculation. In addition, to facilitate ray tracing, we use straight trajectory 

approximation for all the rays, both inside and outside the sphere. But factually, the rays of the 

beam incident on the spheroid are curved, so they should still have curved trajectories inside the 

sphere. Therefore such an approximation also causes some errors for the incidence of a strongly 

focused beam. 

To show the effect of the surface wave for different sizes of particle, we show in  Fig. 3.8 and 

 Fig. 3.9 the scattering intensities in a reduced angular range of [80˚, 100˚] for a water droplet of 

radii 10 and 100um, respectively, and illuminated by the plane wave. We find that the general 
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agreement between the GLMT and the EGOA is better for a large particle than for a small one 

owing to a reduced influence of the surface wave. But attention should be paid to the 

discrepancy that still existing at rainbow angles. This is because for large particles, the rainbow 

of wave theory has finite intensity, whereas the rainbow of ray theory has infinite intensity 

mathematically. 
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Fig. 3.8. Comparison of scattered intensities computed by the GLMT and the EGOA for plane wave scattered by a 

water droplet of m̂=1.333 and r=10 µm. The parameters of the beam are w0→∞, λ0=0.6328 µm and z0=0 µm. The 

EGOA’s result has been offset by a factor of 102 for clarity. 
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Fig. 3.9. Same parameters as  Fig. 3.8, but with r=100 µm. 

3.1.2.2 Comparison to Debye series 
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The EGOA permits us to decompose the contribution of different orders of rays that gives a 

clear physical picture of the mechanism of light scattering. This is one of the most attractive 

aspects of the GO. On the other hand, by writing the Mie coefficients into Debye series, we can 

also identify the contribution of each term, which clarifies the physical origin of many effects 

occurring in the light scattering. Even though the theoretical origins of the terms in the EGOA 

and in the Debye series are not exactly the same, their physical significations are identical. 

 Fig. 3.10 shows the contributions of each order of rays as well as the total scattering intensities 

of a homogeneous sphere located at the center of a Gaussian beam computed by the EGOA and 

 Fig. 3.11 is for the same case but calculated by Debye series. Comparison of the two figures 

indicates that the agreement is satisfactory for different orders of rays, except at rainbow angles 

and in the zones where geometrical rays tend to disappear or disappear. 
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Fig. 3.10. Scattering intensities calculated by the EGOA for a sphere (r=50 µm, m̂=1.333) illuminated by a Gaussian 

beam (w0=50 µm, λ0=0.6328 µm). For clarity, the maximum intensity in the figure is taken to 108 instead of the 

maximum of 6×1010 at 0˚. 
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Fig. 3.11. Same parameters as  Fig. 3.10, but Debye series are used. 

3.1.3 Evaluation of surface wave influence 

Within the framework of GO, the surface wave rays, tunneling rays and complex rays are not 

taken into account. We are more concerned about the surface wave because of its more 

important contribution to the scattering (Hovenac and Lock, 1992). As referred to in Subsection 

 3.1.2, the surface wave plays an important role at scattering angles around 90˚.  

According to van de Hulst’s localization principle (van de Hulst, 1957), for a particle of size 

parameter α>>1, lth partial wave can be associated with a geometrical light ray with the 

incidence angle θi which satisfies sin θi≈l/α=l/kIr. 

By introducing two parameters, l±=x±cα1/3(c≥3) (Nussenzveig, 1969), the partial waves 

characterized by 0≤l≤l– can be related with the contribution from diffracted field and reflected 

and refracted rays calculated by GO; those characterized by l≥l+ are negligible due to the fast 

damping by centrifugal barrier. Thus our main concern is the partial waves characterized by l–

≤l≤l+ at the edge region of the sphere. Such a region can be interpreted as where the grazing rays 

([l–, α]) and the tunneling rays ([α, l+]) dominate. It gives rise to the so-called surface wave and 

tunneling rays which play a role of smoothing the lit and shadow region (Lock, 2003). For a 

plane wave incident on a spherical particle, through Nussenzveig’s modified Watson 

transformation, their angular distribution and interference with other orders of rays can be 
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well estimated (Hovenac, 1991; Nussenzveig, 1969). In the case of a Gaussian beam, however, 

the problem becomes more complicated, ascribed to the non-uniform intensity profile and a 

varying centre and radius of curvature of wavefront during its propagation. Although we have 

tried to combine numerically the surface wave with the geometrical rays, so far we have not 

been successful.   

Nevertheless, we can still give a qualitative analysis of the surface wave effect since its 

contribution depends on the incident flux contained in the surface wave zone. The more the 

energy that is contained in the surface wave zone, the more contribution is made by the surface 

wave. Therefore it is reasonable for us to evaluate the influence of surface by introducing a flux 

ratio index (FRI) F, which compares the flux contained in the surface wave zone A→C→B  to 

that in the non surface wave zone S→A, as illustrated in  Fig. 3.12.  

                       

Fig. 3.12. Figure of the surface wave zone A→B, in which the near-grazing incidence zone A→C corresponding to 

[θ_, π/2] and C→B is the region for both surface wave rays and tunneling rays. 

The region between the two points A and C corresponds to the near-grazing incidence where 

[ ], / 2iθ θ π−∈ , θ−  is the same as that of plane wave incidence, and the region C→B corresponds 

to the zone of both surface wave rays and tunneling rays, where CB  has the length of 1/3cx . 

Thus we have 
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 100%A C C B

S A

F → →

→

Φ +Φ
= ×

Φ
, (3-27)

where A C→Φ , C B→Φ , and S A→Φ  designate the flux contained in the regions A→C, C→B, and 

S→A, respectively. The flux A C→Φ  and C B→Φ  can be calculated by 

 A C S C S A→ → →Φ = Φ −Φ , (3-28)

 C B S B S C→ → →Φ = Φ −Φ . (3-29)

Using Ar , Br , and Cr  to designate the vertical distances, respectively, from the points A, B, and 

C to the x axis, we have 

 
 

G 0
2 cos( , )Ar

S A I F z rdrπ→Φ = ∫
uv v

, (3-30)

 
 

G 0
2 cos( , )Br

S B I F z rdrπ→Φ = ∫
uv v

, (3-31)

 
 

G 0
2 cos( , )Cr

S C I F z rdrπ→Φ = ∫
uv v

. (3-32)

As an example, F is calculated for the particles of radii 25, 50, 100, and 200 µm versus beam 

waist radius. The results are illustrated in  Fig. 3.13.  With the growth of the beam waist radius, 

the FRI increases to a constant for each particle size, which means more proportion of flux is 

contained by surface wave and it has a gradually remarkable effect to the scattering behavior. 

For a pure droplet of radius r=25, 100, and 250 µm, to control the deviation error of the GLMT 

from the EGOA within 5%, we find that the local beam waist should be less than 13 µm, 75 µm, 

and 280 µm, respectively. Hence, once the beam waist is small enough, the surface wave effect 

can be greatly suppressed. 

FRI also depends on the particle size. As illustrated by  Fig. 3.13, for a same value of 0w , the 

surface wave effect is more significant for a small particle than for a large one. This is because, 

compared with the geometrical rays, the surface wave has a decreasing area proportion for an 

increasing particle size. For the extreme case of plane wave incidence, comparison of FRI can 

be more straightforward made through calculating the projection area ratio of the surface wave 

zone ( sws∆ ) and the nonsurface wave zone ( n sws −∆ ) since IG=I0=const in this case. Then we have 

0
[ / ]sw n sw ws s − →∞∆ ∆ = 1/3 1/3 2

I I4 /[( ) ( ) ]c k r c k r −− , which means that better results can be achieved by 
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the EGOA for larger particles than for small ones. Especially when the beam waist tends to 

infinity and r is large enough, F is inversely proportional to α2/3. 

Thus, we end this subsection by the comment that EGOA gives better results for a larger particle 

illuminated by a relatively focused Gaussian beam. 
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Fig. 3.13. FRI F of the surface wave for particles of radii 25, 50, 100, and 200 µm. (c=4, z0=0, m̂=1.333). 

3.2 Gaussian beam scattering by a spheroid 

In this subsection, the far-field scattering of a spheroidal particle illuminated by a Gaussian 

beam is discussed. The prolate and oblate spheroids are formed by rotating an ellipse around its 

major axis of length 2a and the minor one of length 2b, respectively, as illustrated in  Fig. 3.14. 

Since the beam propagates along the rotational axis of the spheroid, the situation of end-on 

incidence is brought in and the incident and scattered rays are all symmetric to the scattering 

plane. In this case, the TE and TM polarizations always stay separate and the mathematical 

handling can be simplified. For any other orientation of the spheroid or off axis incidence, there 

is no longer such symmetry; the plane of incidence changes at every interaction of a ray with the 

spheroid surface, leading to TE-TM polarization mixing that is difficult to unravel. As was done 

for spherical particle in Subsection  3.1, we still use the straight trajectory approximation for all 

the rays, both inside and outside the sphere. 
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                                                                         (a) 

                                       

(b) 

Fig. 3.14. Scheme of ray tracing in a homogeneous spheroid which is located on z-axis of the incident Gaussian beam. 

Rotation axis of the spheroid is z-axis. (a) Prolate spheroid; (b) Oblate spheroid. 
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3.2.1 Description of the method  

A TEM00 Gaussian beam of waist radius w0, wavelength λ0 in vacuum, and polarized in the x 

direction is assumed to propagate along the z axis, on which is located a spheroid of relative 

refractive index ˆ r im m m i= + . The center of the particle OP is located at the origin of the 

coordinate system and the center of the beam OG at (0, 0, z0). The aspect ratio κ of the spheroid 

is defined as the ratio of its semiaxis along the symmetric axis (z direction) and the semiaxis in 

the transverse direction (in OP-xy plane), so κ>1 for a prolate spheroid and κ<1 for an oblate one. 

For convenience, we use a and b to denote the semimajor and semiminor axes of the spheroid, 

respectively, and r to denote the projection radius of the spheroid in OP-xy plane. Therefore we 

have r=a for the oblate spheroid and r=b for the prolate one. 

As for the spherical particle, the scattered field is also considered as a superposition of 

contributions of all the orders of rays, including specularly reflected rays, Sj,0, refracted rays of 

order p, Sj,p, which undergo p–1 internal reflections as well as the diffraction field Sd. The 

scattered field is then calculated by the summation of the complex amplitude of the diffracted 

field, reflected ray and all orders of refracted rays, as indicated by Eq. (3-4). And the far-field 

scattering intensity jI  at an observation point with distance Rs from the particle center is 

calculated by Eq. (3-5). 

Calculation of the diffraction and description of the propagation of the Gaussian beam remain 

the same as for the spherical particle. We neglect also the so-called climbing wave (James, 1976) 

in geometrical diffraction theory for simplicity and treat the three-dimensional spheroid as a 

two-dimensional disk with radius r (Chevaillier et al., 1986, 1990). The externally reflected and 

refracted rays can be treated in the same manner as that for spherical particle, but we have no 

longer analytical expressions for deviation angle evaluation, the phase shifts and the number of 

focal lines passed by the rays. Therefore a sophisticate numerical algorithm is developed to 

predict the scattering intensity according to definition of the phase shift, the divergent and the 

attenuation factors.  

Since van de Hulst’s definition of the focal points (van de Hulst, 1957) still holds for the 

Gaussian beam scattering by the rotationally symmetric spheroid, the phase shift due to the focal 
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lines ,p FLφ , is still numerically determined by the number of intersections both inside and 

outside of the spheroid, as done for the sphere. However, it is worth noting that for a spheroid, 

both the refractive index mr and the aspect ratio κ decide the number of the focal line a ray 

encounters, while for a sphere, only the refractive index mr takes effect.  

3.2.1.1 Phase shift due to optical path 

For a spherical particle, once the incidence angle is known, the incidence angle of the ray inside 

the sphere always stays same and the length of each optical path between two successive 

internal reflection points keeps constant. For a spheroid, however, each time the ray hits the 

boundary of the spheroid, the incidence angle changes and the length of the optical path inside 

the spheroid varies. No analytical expression is found for them. Then we evaluate the path 

numerically step by step. 

 

Fig. 3.15. Scheme for the calculation of phase shifts. 

We consider a prolate spheroid illuminated by a Gaussian beam as shown in  Fig. 3.15. The 

center of the beam is located at OG with a distance |z0| from the center of the particle OP. First, 

similar to the case of a sphere, three kinds of phase shifts are taken into account: the phase shift 
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sphere) ,p FLφ , and that due to the wavefront curvature of the Gaussian beam Gφ : 

 , ,2p p PH p FL G
πφ φ φ φ= + + + . (3-33)

We take the ray passing by the centre of the particle OP with the same direction as the incident 

and the emergent rays as reference, i.e., ROPR1, where R, R1 are the intersection points between 

the radii and the reference circle, which has the same radius as the semimajor axis a. Then the 

phase shift of the reflected ray is 

 ( )0, I 0 0 0 0PH P Pk RO HS O R S Hφ = − + − . (3-34)

The phase shift for the directly transmitted ray without any internal reflection can be evaluated 

by (see  Fig. 3.15) 

 ( ) ( )1, I 0 0 1 1 1 1PH P r Pk RO HS m S S O R S Hφ ⎡ ⎤= − − + −⎣ ⎦ . (3-35)

Similarly, the phase shift for the ray undergoing p–1 internal reflections is determined by 

 ( ) ( ), I 0p PH P r p P p p pk RO HS m L O R S Hφ ⎡ ⎤= − − + −⎣ ⎦ , (3-36)

where the total path in the spheroid 11

p
p i ii

L S S−=
= ∑  is evaluated numerically. For all orders of p, 

P p p pO R S H−  is calculated from the coordinate of the incident point of the ray on the surface of 

the particle and the deviation angle pθ : 

 ( )2
2 , ,2 2 2 2

, , , , 2

tan
tan 1

i p i p p
P p p p i p i p p p i p i p

p

y z
O R S H z y H R z y

θ
θ

−
− = + − = + −

+
, (3-37)

where (yi,p, zi,p) is the intersection point of the incident ray and particle surface. And for 

0PRO HS− , we have 

 ( )2
,0 ,02 2

0 ,0 ,0 2

tan
tan 1

i i
P i i

y z
RO HS z y

β
β

−
− = + −

+
. (3-38)



 Chapter 3. Geometrical Optics Approximation of Gaussian Beam Scattering by a Spheroid 

 99

Then phase shift due to the curvature of the wavefront should be taken into account. As for the 

case of spherical particle, it is defined by 

[ ] ( ) [ ]
0 0

2

,0 ,02 2
0 I ,0 ,0 02

tan
( ) ) ( ) )

tan 1
i i

G HS PQ HS i i i i

y z
k z a k a z y k z a

β
φ φ φ φ φ φ

β

⎛ ⎞−⎜ ⎟= − = − + − = − + − − + −⎜ ⎟+⎜ ⎟
⎝ ⎠

.

  (3-39) 

The phase shift of the externally reflected ray is then given by 

 ( ) ( )2 2

,0 ,0 ,0 ,0 02 2 2 2
0, I ,0 ,0 I ,0 ,02 2

0

tan tan
tan 1 tan 1

i i i i
PH i i i i

y z y z
k z y k z y

β θ
φ

β θ
− −

= + − + + −
+ +

, (3-40)

and the phase for the refracted ray is given by 

( ) ( )22
, ,,0 ,02 2 2 2

, ,0 ,0 I I , ,2 2

tantan
tan 1 tan 1

i p i p pi i
p PH i i r p i p i p

p
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where β is the angle between incident ray HS0 and the z axis and pθ  is the scattering angle of the 

emergent ray. pθ , Lp, and (yi,p, zi,p) are determined from the ray tracing program similar to that 

in an elliptical cross section (Marcuse, 1974). It is proved that when κ→1,  

 2 cosp rL pr θ= , (3-42)
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Namely Eqs.(3-39)-(3-41) recover to the corresponding expressions of the spherical particle 

scattering. 

3.2.1.2 Phase shift due to total reflection 

Particularly for the ray tracing in a spheroid, the total reflection may be encountered and it 

should be taken into account carefully, since it results in two effects. One is absence of the 
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emergent rays beyond the critical angle θc, the other is additional phase shifts , ,p T jφ∆ , where the 

subscript j=1 or 2 stands for the perpendicular or parallel component. Then we have (Ghatak, 

1977) 
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Although such a phase change can be incorporated into a complex number expression of 

reflection coefficients, Eqs.(3-45)-(3-46) are more convenient for later superposition (Xu et al., 

2004a) of amplitude and phase separately. Accounting all these effects, the final expression of 

phase shift should be revised as 

 , , , , ,2p j G p PH p FL p T j
πφ φ φ φ φ= + + + + ∆ . (3-47)

The above equations for a prolate spheroid are all valid for an oblate one. 

3.2.1.3 Amplitude of scattered field 

After p–1 internal reflections, the amplitude of an incident ray, ,j pε , can be calculated by 
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where ,j pr  is Fresnel coefficients calculated by 
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On the other hand, when a bundle of rays arrive at a surface, it is diverged or converged 
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according to the local curvature of the surface. As for the spherical particle scattering, the 

divergence factor DG is defined by 
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where τ  is the position angle between vector 0 PS O
uuuuuv

 and the z axis. It can be calculated by 
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Similar to the spherical particle scattering, the divergence factor pd
d
θ
τ
′

 for the spheroid is 

approximated numerically by 
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(3-53)

where pθ ′  is the deviation angle of the emergent ray and the subscripts l−1 and l+1 designate the 

two incident rays adjacent to the lth one. lr  is the distance from the intersection point S0(yi,0, zi,0) 

of the lth incident ray and particle surface incident to the particle centre OP(0, 0), namely, 

 ( )1/ 22 2
,0, ,0,l i l i lr y z= + . (3-54)

For an absorbing spheroid, an attenuation factor should also be taken into account. When the 

path inside a spheroid Lp is known, the attenuation factor pξ  can be easily obtained from 

 Iexp( )p i pk m Lξ = − . (3-55)

Through energy balance identity (Hovenac. 1991), the amplitude of an emergent ray can then be 

calculated by 

 1/ 2
, I , exp( )j p G j p G p pS k r S D iε ξ φ= , (3-56)
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where SG is the amplitude of the Gaussian beam at the intersection point of the incident 

Gaussian ray and the surface of the spheroid.  

3.2.2 Numerical results and discussion 

According to the method presented in Subsection  3.2.1, in this subsection we predict the 

scattered intensities of a prolate or oblate spheroid illuminated by a Gaussian beam. The particle 

can be transparent or absorbing. As done for the spherical particle, the diffraction of the 

spheroid is approximated by a simple disk of the same projection section as that of the spheroid 

in the plane perpendicular to the incident beam. The surface wave has not been taken into 

account. However, its potential influence on a scattering is also analyzed through evaluating FRI 

which gives a qualitative analysis of the surface wave effect. 

3.2.2.1 Scattering diagrams of a spheroid 

For all the numerical calculations presented, the number of internal reflections, pmax, is taken to 

be 20. And 2000 equidistant incident rays are adopted to carry out the ray tracing in the spheroid. 

These values are found enough to ensure the precision of the final interpolation and the 

convergence of amplitudes summation.  

To check our algorithm and verify the code, the calculation is carried out for a prolate and an 

oblate spheroid with an aspect ratio approaching 1. The result is compared with that predicted 

by using the GLMT. In  Fig. 3.16 and  Fig. 3.17, the scattering intensities of a transparent water 

droplet ( m̂ =1.333) and a slightly absorbing one ( m̂ =1.333+0.001i) with a projection radius 

r=100 µm illuminated by a Gaussian beam are compared with those of a sphere predicted by the 

GLMT. We find that when the aspect ratio κ approaches 1, the scattering diagrams tend to those 

predicted by the GLMT and EGOA for the sphere. We also calculate the forward scattering 

intensities of a prolate spheroid of semimajor axis a=15 µm and semiminor axis b=10 µm 

illuminated by a plane wave ( Fig. 3.18) and compare with the result obtained by Hovenac 

(1991). Same intensity profiles are found. 
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Fig. 3.16. Comparison of the scattering intensity calculated by the GLMT for a sphere and by the EGOA for a 

spherical, prolate (κ=1.0005) and oblate (κ=0.9995) spheroid. The projection radius of the spheroid r is equal to the 

radius of the sphere (r=a=100 µm).The particle of refractive index m̂=1.333 is located at the center of a Gaussian 

beam of waist radius w0=50 µm and wavelength λ0=0.6328 µm. The curves of the EGOA have been, respectively, 

offset by the factors of 102, 104, and 106 for clarity. 
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Fig. 3.17. Same parameters as Fig.3 but with m̂=1.333+0.001i. 
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Fig. 3.18. Forward-scattering intensity of a spheroidal droplet of projection radius r=b=10 µm and aspect ratio κ=1.5 

illuminated by a plane wave. The scattering pattern is the same as that given by Hovenac (1991) in Fig. 8. 

Then the dependence of the scattering pattern on aspect ratio of the spheroid is shown in  Fig. 

3.19 and  Fig. 3.20. A water droplet of refractive index m̂ =1.333 is assumed to be illuminated 

by a Gaussian beam of waist radius w0=50 µm. The projection radius r of the particle remains 

100 µm in all the calculations. With the increase of the aspect ratio, a remarkable backward 

movement of the primary rainbow position is observed except for κ=2 for which neither 

primary- nor higher-order rainbows are clearly observable. It’s noteworthy that, for the aspect 

ratio κ=0.5, as illustrated in  Fig. 3.19, both primary- and third-order rainbows are remarkable 

and they locate at 100˚ and 70˚, respectively. The secondary-order rainbow, however, is hardly 

perceivable. The dependence of the rainbow position on the aspect ratio and the focalization of 

the beam a well as the particle location will be examined in Subsection  3.2.2.2. 
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Fig. 3.19. Scattering intensity calculated by the EGOA for an oblate droplet of projection radius r=100 µm, different 

aspect ratios, and located at the center of a Gaussian beam of w0=50 µm, λ0=0.6328 µm. The results of the cases κ 

=0.8, 0.95, and 0.99 have been respectively offset by the factors of 102, 104, and 106 for clarity. 
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Fig. 3.20. Scattering intensity calculated by the EGOA for a prolate droplet of projection radius r=100 µm, different 

aspect ratios, and located at the center of a Gaussian beam of w0=50 µm, λ0=0.6328 µm. The results of the cases 

κ=1.05, 1.2, and 2.0 have been, respectively, offset by the factors of 102, 104, and 106 for clarity.   

In a spheroid, the way of propagation for the surface wave rays might be different from that in a 

sphere because the surface curvature of the spheroid varies from place to place and the 

incidence angle changes each time the ray hits the surface of the spheroid. Up to now, we have 

not been able to develop a numerical or theoretical approach to evaluate quantitatively the 

surface wave effect in our calculation. However, in this thesis we try discussing qualitatively the 

surface wave effect from the viewpoint of the energy incident on the surface at near-grazing 
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angle and neglect the concrete propagation behavior of surface wave inside the particle as well 

as the newly created surface wave by internal near-grazing incidence. Such a simplification 

permits a similar flux analysis of the surface wave, as given in Subsection  3.1.3, by using the 

FRI F, which reveals to some extent the potential influence of the surface wave on the scattering. 

For the spheroid, we use the same definition of the flux ratio index F as for the sphere.  

In  Fig. 3.21 are plotted the F curves versus the aspect ratio for a Gaussian beam (w0=50 µm) and 

quasi plane wave (w0=10 cm in the calculation). The refractive index and the projection radius 

of the spheroid are 1.333 and 100µm, respectively ( m̂ =1.333 and r=100 µm). It is evident that 

for the same aspect ratio κ, the FRI for the beam of waist half of the projection radius of the 

spheroid is much smaller than that for the plane wave because the incident intensity in the 

surface wave zone is so weak that can be neglected. This means the surface wave has a limited 

potential influence to the scattering when the ratio of beam waist radius w0 to the projection 

radius of the spheroid r is small.  

 

Fig. 3.21. Impact factor as a function of aspect ratio calculated for a spheroid of projection radius r=100 µm 

illuminated by a Gaussian beam of waist radius w0=50 µm (dashed curve) and quasi-plane wave of w0=10 cm (solid 

curve). 

Meanwhile,  Fig. 3.21 shows that the FRI increases with the aspect ratio. This reveals the fact 

that the surface wave has more remarkable influence on the scattering of a prolate spheroid than 

on the scattering of an oblate one.  

Combined with the discussions for the spherical particle in Subsection  3.1, we end the section 

0.5 1 1.5 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Aspect ratio

Fl
ux

 R
at

io
 I

nd
ex

 F

Beam Waist=50µm
Beam Waist=10cm

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
x 10

−3

Aspect ratio

F
lu

x 
R

at
io

 I
nd

ex
 F

Beam Waist=50µm



 Chapter 3. Geometrical Optics Approximation of Gaussian Beam Scattering by a Spheroid 

 107

with the following comments.  

1. The surface wave effect depends on the ratio of the size of the particle to the beam waist 

radius; the smaller the ratio is, the less the effect is important. As found for the sphere, the flux 

ratio index F is inversely proportional to x2/3 for a plane wave incident on a large sphere. 

2. The surface wave effect depends on the local curvature of the surface of the particle, the 

aspect ratio, and the propagation directions of the incident Gaussian rays, or the focalization of 

the beam. These parameters decide the size of surface wave zone. For example, a prolate 

spheroid has a larger surface wave zone than an oblate one for the same projection radius r. 

Same effect can be achieved by a spheroid located before or behind the beam waist. 

3.2.2.2 Geometric rainbow angle of primary order 

The surface wave rays, tunneling rays, as well as the complex rays are not included in our GO 

approximation, which brings in some inaccuracies to scattering calculation. However, the 

prediction of the rainbow position θrg for a Gaussian beam incident on a spheroid can still be 

achieved within the framework of GO, as done by Moebius (1910) for plane wave incidence. 

We are especially interested in the angular location of the primary rainbow of a spheroid, due to 

its more practical applications in thermometry and particle sizing technologies (van Beeck and 

Riethmuller, 1996; Yildiz et al., 2002). 

From the viewpoint of GO, the stationary deflection of the emergent rays experiencing one 

internal reflection with respect to the variation of position angles, i.e., 2 / 0d dθ τ → , produces 

the start point of the primary geometrical rainbow. On the basis of such a definition, rainbow 

positions versus beam waist radius, the aspect ratio, the refractive index, and the particle 

location in the beam can be predicted accordingly.  

As pointed out in Subsection  3.2.2.1, the surface wave effect increases with the aspect ratio of 

the spheroid. GO might not be accurate enough for large aspect ratios and its validity needs 

further verification. However, with the decrease of aspect ratio, the rays impinge on a flatter 

surface and the observed backscatter in experiment is also quite different from the prediction of 

the GO (Hovenac, 1991). Therefore in the present subsection, we only discuss the rainbow of a 
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spheroid not greatly deformed from the sphere, i.e., 0.5≤κ≤2.0.  

a. Rainbow position versus aspect ratio and comparison with Moebius’s results 

The geometric rainbow is found to be sensitive to the aspect ratio. As illustrated in  Fig. 3.22, 

when a spheroid water droplet of refractive index m̂ =1.333 and projection radius r=100 µm is 

located at the centre of the beam, the geometric angular position of the rainbow θrg moves 

backward from 98.7˚ for κ=0.5 to 180˚ for κ=1.42. The rainbow disappears for the aspect ratio 

between 1.42 and 1.58, then reappears and moves to the forward until 152˚ for κ=2. Such a 

result is obtained for all the four beam waists radii 25 µm, 75 µm, 200 µm, and 3000 µm.  
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Fig. 3.22. Primary-order rainbow position versus aspect ratio, predicted by the EGOA for a spheroidal droplet of 

projection radius r=100 µm and illuminated by the Gaussian beam of waist radii w0=25, 75, 200, and 3000 µm, 

respectively. 

To explore the rainbow phenomenon for a spheroid of different aspect ratios, we perform ray 

tracing for a prolate spheroid of aspect ratios κ=1.35 (case κ<1.42), κ=1.5 (case 1.42≤κ≤1.58), 

and κ=1.65 (case κ>1.58), with same projection radius r=100 µm. Three parallel incident rays, 

labeled by a, b and c are used for ray tracing. They correspond to the emergent rays a′ , b′ , and 

c′ , respectively. As illustrated in  Fig. 3.23, after experiencing one internal reflection, the 

emergent ray b′  corresponds to the rainbow angle of θrg=177.1˚ and 175.5˚, respectively, for a 

spheroid of κ=1.35 and κ=1.65, and the other two emergent rays a′  and c′  locate at the same 

side of ray b′ , which indicates that there is a turning angle for the emergent rays at the 

geometrical rainbow angle. For the spheroid of aspect ratio κ=1.5 the turning angle does 
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not exist; therefore there is no rainbow phenomenon. This can also be seen clearly from the 

variation of the deviation angle pθ ′ of emergent rays versus the incidence angle in  Fig. 3.24. It is 

noteworthy that for all these three aspect ratios, after experiencing one internal reflection, all the 

incident rays are refracted out from the spheroid.  

−1400 −1200 −1000 −800 −600 −400 −200 0 200
−200

−100

0

100

200

y(
µm

)

κ =1.35

−1400 −1200 −1000 −800 −600 −400 −200 0 200
−200

−100

0

100

200

y(
µm

)

κ =1.5

−1400 −1200 −1000 −800 −600 −400 −200 0 200
−200

−100

0

100

200

z(µm)

y(
µm

)

κ =1.65

a 
b 
c 

a’ 
b’ 

c’ 

c 

c 

c’ 

c’ 

b b’ 

b’ 

b 

a a’ 

a’ 
a 

 

Fig. 3.23. Ray tracing in three prolate spheroids with the same projection radius r=100 µm but different aspect ratios 

κ=1.35, κ=1.50, and κ=1.65, respectively. The three incident rays are parallel to the z axis.  
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Fig. 3.24. Deviation angle θp’ of the emergent rays (p=2) from three prolate spheroids with the same projection radius 

r=100 µm, but with aspect ratios κ=1.35, κ=1.5, and κ=1.65, respectively (2000 equidistant incident rays are used).  

In  Fig. 3.25 can we find that, for the beam of waist radii w0=25 and 75 µm, the intensity 

magnitude of the incident rays associated with the rainbow angle grows drastically when the 

aspect ratio increases. This reveals that the rays causing primary-order rainbows move from the 
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edge region of the particle toward the beam axis. Such a comment is confirmed by adopting 

2000 equidistant rays to perform the ray tracing in a prolate droplet of projection radius r=100 

µm and refractive index m̂ =1.333, and illuminated by a plane wave. When κ increases from 

1.01 to 1.25 and then to 1.40, the rays at 1652 826y =  µm, 1471 735.5y =  µm, and 642 321y =  µm 

are found associated with 2 / 0d dθ τ = , respectively.  
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Fig. 3.25. Intensity of the incident ray associated with the rainbow position θrg  in  Fig. 3.22. 

Next, we compare Moebius’s prediction of the primary rainbow to that of EGOA method. 

Moebius (1910) found the following simple formula for the deviation of geometrical rainbow, 

∆θrg for the case of plane incident on a prolate or oblate spheroid: 

 rg, o rg, o3
rg rg,o pl

cos cos
16 sin arccos( ) cos( 2 )

r r

b a
b a m m

τ τ
θ θ

⎡ ⎤−⎛ ⎞∆ = − Θ⎢ ⎥⎜ ⎟+⎝ ⎠ ⎣ ⎦
, (3-57)

where Θpl is the angle between the incoming plane wave and the z-axis (here Θpl =0˚ for end-on 

incidence), the incidence angle corresponding to rainbow angle, τrg, o for a sphere (the subscript 

“o” designate the sphere) is calculated by 

 ( ) 1/ 22
rg, osin 1 / 3rmτ ⎡ ⎤= −⎣ ⎦ , (3-58)

and θrg, o is the geometrical rainbow angle for a sphere and can be related to τrg, o by  
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 rg, o rg, o rg, o2 4θ τ τ ′= − + , (3-59)

where the refraction angle rg, oτ ′  is obtained from the incidence angle rg, oτ  by using Snell’s law: 

 rg, o
rg, o

cos( )
cos( )

rm
τ

τ ′ = , (3-60)

The droplet with refractive index m̂ =1.333 is illuminated by a plane wave of wavelength 

λ0=0.6328 µm. The calculation is made for spheroids of aspect ratio κ between 0.8 and 1.2. The 

results are illustrated in  Fig. 3.26. We find that the discrepancy of Moebius’s result with that of 

the EGOA is less than 0.5˚ for |κ–1|≤0.05 and less than 2˚ for |κ–1|≤0.11. The more the aspect 

ratio differs from 1, the more the discrepancy. This is because Moebius theory is only an O(κ) 

approximation to the exact ray tracing, which can be applied only for the aspect ratio quite near 

unity. 
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Fig. 3.26. Comparison of primary-order rainbow position (versus aspect ratio) predicted by the EGOA and the 

Moebius’s formula when a spheroidal droplet of projection radius r=100 µm is illuminated by a plane wave. 

It’s noteworthy that according to the definition of rainbow, the emergent rays of p=2 might have 

more than one stationary deflection angle if the spheroid deviates much from the sphere, e.g., 

κ<0.89 or κ>1.68. Within the framework of GO, this means that there exist several revolutions 

of the emergent rays corresponding to more than one primary rainbow. However, in  Fig. 3.22, 

the first stationary deflection angle is looked on as the occurrence position of the primary 

rainbow.  
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3.2.2.3 Rainbow position versus waist radius 

Except for some tiny differences when κ approaches 2.0, nearly the same primary rainbow 

positions are predicted for the different beam waist radii, as shown in  Fig. 3.22. The difference 

of θrg between w0=25 and 3000 µm is found to be less than 0.06˚ when κ is between 0.5 and 1.42. 

This is because the divergence angle is very small, less than 0.46˚ for the beam of waist radius 

w0>25 µm and wavelength λ0=0.6328 µm.  

3.2.2.4 Rainbow position versus refractive index 

The primary rainbow position is sensitive to the refractive index. A relationship of geometric 

rainbow position θrg versus the refractive index rm  is shown in  Fig. 3.27, when a prolate 

spheroid of the same projection radius r=100 µm illuminated by a plane wave (w0→∞) of 

wavelength λ0=0.6328 µm. We find that for all the κ values, the rainbow position moves 

backward when the refractive index increases, until 180˚. This is consistent with the 

phenomenon in  Fig. 3.19 and  Fig. 3.20, in which the position of the primary rainbow exhibits a 

backward moving phenomenon, from nearly 98.7˚ (κ=0.5) to 161˚ (κ =1.2) and then disappears 

(κ=2).  
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Fig. 3.27. Geometric rainbow position versus refractive index for a prolate spheroid illuminated by a plane wave. The 

results indicated by the curves are calculated by the EGOA and those indicated by symbols are calculated by the 

Moebius’s formula.  

3.2.2.5 Rainbow position versus particle location 
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The preceding discussions are based on the assumption that the particle is located at the center 

of the beam. Actually, when the beam is not too much focused, the dependency of θrg on the 

particle’s location in the beam is not quite remarkable. For example, when w0=r=100 µm and 

the prolate droplet of κ=1.1 and m̂ =1.333 moves along the z axis, the primary rainbow position 

varies slightly at the vicinity of 148.2936˚ (see  Fig. 3.28), which corresponds to plane wave 

incidence. 
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Fig. 3.28. Geometric rainbow position θrg versus particle position z0 for a prolate droplet of aspect ratio κ=1.1, 

projection radius r=100 µm and illuminated by a Gaussian beam of waist radius w0=100 µm. 

3.3 Conclusion 

The GO approximation has been extended to describe light scattering by a transparent or 

absorbing sphere and spheroid for on-axis illumination of Gaussian beam. To explore the 

EGOA’s validity range, a comparison is made to the GLMT for a sphere. It is found that when 

the particle radius is much larger than the wavelength the agreement between the EGOA and 

GLMT is good. The relative discrepancy is normally less than 5% when the beam waist radius is 

smaller than the particle radius. But such a discrepancy becomes more remarkable if the beam 

waist radius is larger than the radius of the sphere, since in this situation ray theory have some 

inaccuracies at angles where surface wave plays an important role.  

For an absorbing sphere the agreement between the results of EGOA and those of GLMT is 
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fairly good in all angular directions. However, for a relatively small particle (say the radius of 

the particle is less than 50 times the wavelength), when the ratio of the beam waist radius and 

the particle radius is smaller than one fourth, the discrepancy between the two theories becomes 

remarkable.  

On the basis of these works for a spherical particle, the EGOA is extended to the studies of the 

Gaussian beam scattered by a large spheroid. The position of the primary order rainbow angle is 

theoretically predicted and compared with that predicted by Moebius’s formula. It shows a high 

dependence on the aspect ratio of the spheroid and its refractive index, but little on the beam 

waist radius as well as particle location in the beam when it is not extremely focused. Our 

EGOA permits to predict the rainbow position for a spheroid of any aspect ratio. The limitation 

of Moebius formula for rainbow prediction for the spheroids of aspect ratio near to unity is 

overcome. A nonrainbow region is identified for the droplet when its aspect ratio κ is within 

[1.42, 1.58]. 

By introducing the flux ratio factor F, the surface wave effect is qualitatively analyzed. It is 

found to have less influence on the scattering of a large particle illuminated by a relatively 

focused beam. Moreover, its effect depends not only on the refractive index, the size, and the 

surface curvature of the spheroid, but also on the focalization of the beam and the position of the 

particle in the beam. 
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Chapter 4. Introduction 

Particle size and concentration analysis is a fundamental topic of aerosol science, biomedical 

science and many industrial processes. The last several decades have seen more and more 

optical means applied in particle and particle system characterization because of their 

advantages of non-intrusive measurement and rapid data processing.  

Compared with other optical particle sizing methods, such as the laser diffraction method (Allen, 

1997), the angular scattering method (Holve and Self., 1979a, b), and the photo correlation 

spectroscopy (Berne and Pecora, 1976), etc., the light extinction method (LEM) (van Dongen et 

al., 1994; Wang et al., 1994) has several outstanding features: a more simpler optical layout, no 

strict requirements on photoelectric detecting system and ease in operation. Theoretical and 

experimental studies have indicated that the LEM can be applied to the measure the particles of 

diameter in [0.1-5.0] µm by using the visible wavelength range of a light source. Such a range is 

between the lower limit of laser diffraction method and the upper limit of photo correlation 

spectroscopy.  

Abundant references can be found during the development of the LEM in the past several 

decades. The main contributions to this method in history will be reviewed in this chapter. They 

can be classified roughly into the following three aspects to be discussed in detail in the 

upcoming subsections: 1. development of light extinction method; 2. Influence of some factors; 

3. Inversion algorithms.  

4.1 Development of light extinction method 

Generally speaking, the LEM includes two-wavelength method (Uthe, 1982), three-wavelength 

method (Teorell, 1931; Cashdollar et al., 1977; Wittig et al., 1981; Kourti et al., 1987), picture-

matching method (Walters et al., 1980), and spectral light extinction method (SLEM) (van 

Dongen et al., 1994; Wang et al., 1994). Except the SLEM, all the methods aim at the evaluation 

of the average size as well as the concentration of a particle system. For example, the two-

wavelength method (Uthe, 1982) is based on the monotonic relationship between the extinction 

coefficient ratio of two wavelengths RQ (RQ=Qext ( m̂ , d, λ1)/Qext ( m̂ , d, λ2)) for particle (relative 
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refractive index m̂ ) of mean diameter d less than a certain value dmax (d<dmax).  

However, in the whole range of d, there exist oscillations with the Qext-d curve for lossless and 

weakly absorbing particles so that the particle diameter d has multi-valued dependency on a 

same extinction coefficient ratio RQ. In this case at least two extinction coefficient ratios, or 

three wavelengths, are needed to determine the average diameter and the concentration (Teorell, 

1931; Cashdollar et al., 1977; Wittig et al., 1981). 

A critical improvement of LEM is the usage of a series of extinction ratios selected from a 

spectrum generated by a light source with a certain bandwidth. Since in this case much more 

information about the particle system can be collected, and the inversion of particle size 

distribution instead of a mean value, e.g., D32, becomes possible. Such an improvement also 

brings out the SLEM used in this thesis to measure the polystyrene particles and the wet steam 

in a turbine. 

Because of the aforementioned characteristics and advantages of the LEM and SLEM, they have 

found many applications in aerosol science and technology. For example, Walters and Skingley 

(1979) used the LEM to measure the droplets contained in the wet steam flow; Crawley et al. 

(1997) developed the SLEM system for online crystallization measurement. Recently, urban 

aerosol measurements by using the SLEM have been conducted by Kocifaj and Horvath (2005). 

In addition, the SLEM have also been used for measurement of fresh undiluted cigarette smoke, 

soot particles contained in the combustion flame, and the flue gas of the diesel engine (Dittmann 

et al., 1994; Widmann et al., 2003). To date, the LEM has also been successfully combined with 

other measurement techniques, e.g., the forward scattering method (Nefedov et al., 1997), light 

fluctuation method (Wessely, 1999), etc., to meet higher requirement of measurement. 

4.2 Influence of some factors  

In the development of the LEM, influence of some factors on the measurement precision, such 

as the refractive index, the multiple scattering, the particle nonsphericity, and the forwarding 

scattering effect have been discussed. They are to be briefly reviewed in the upcoming 

subsections. 
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4.2.1 Refractive index 

Influence of inaccurate estimation of refractive index on the inverse results has been 

systematically studied by Wang et al. (1996). It is found that small inaccuracy involved in 

refractive index of the particle of ~0.05 ( IIm̂∆ =0.05) might bring in a maximum deviation of 

5~6% to the inversed mean diameter. When water is used as the surrounding medium, it can be 

considered as transparent and has an average refractive index 1.333 ( Im̂ =1.333) at common 

temperature and pressure, though in the strict sense its real value changes slightly with the 

wavelength. Taking advantage of the sensibility extinction ratio on the refractive index, Xu et al. 

(2005) explore the feasibility of measuring the refractive index of the particle by using SLEM. It 

was found that when the monodispersity of the particle system is high enough, the SLEM is 

applicable. 

4.2.2 Multiple scattering and forward scattering 

A useful parameter for characterization of the scattering regimes is the optical thickness ξ, 

which is calculated by the turbidity τ multiplied with the distance L the light traverses through 

the measurement zone (ξ=τL). As suggested by Swanson et al. (1999), we use the optical 

thickness ξ as the parameter to distinguish three scattering regimes: the single scattering regime 

characterized by ξ<1, the multiple scattering regime characterized by 1<ξ<10, and diffusion 

regime characterized by ξ≥10.  

Since the extinction method is based on the measurement of the directly transmitted light 

intensities, the detected signal should not contain any component of the scattering intensities. 

However, the detector used in the SLEM system has a definite size corresponding to a certain 

forward angular range, so that in theory the detector receives the scattered intensities more or 

less. When the detector used in the SLEM system is large, corresponding to a larger collection 

angle, the influence of forward scattering effect should be carefully considered, even for the 

single scattering regime (Deepak and Box, 1978a, b).  

Most researchers restrict the application of Beer-Lambert law to the situation of single scattering 

regime, so that the influence of multiple scattering can be neglected. However, Swanson et al.’s 
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research indicates that the validity range of Beer-Lambert law used by the LEM and the SLEM 

could cover completely the single scattering and multiple scattering regimes (ξ<10) as long as 

the maximum half collection angle of the detector (∆θ1/2) is less than one tenth of the first 

angular minimum in the Fraunhofer diffraction pattern of a disk with the same projection area as 

that of the spherical particle (Swanson et al., 1999). Namely,  

 1/ 2
I

1 0.122
ˆ10 m d
λθ θ∆ ≤ ∆ = , (4-1)

where λ is the wavelength of incident light in the medium and d is the diameter of the particle. 

This means that to measure the polystyrene particle of diameter d=10 µm, refractive index 1.590 

( IIm̂ =1.590) and suspended in water ( Im̂ =1.333), the collection angle should be less than 0.26˚ 

for the wavelength of 488 nm and the optical thickness ξ as large as 10. 

For a larger collection angle of the detector, multiple scattering effect should be taken into 

account even for small optical thickness. Studies on this subject have been carried out by 

Schnablegger and Glatter (1995) via solving the radiative transfer equation (RTE). Through 

incorporation of the first-order approximation of multiple scattering into PSD inversion 

(Schnablegger and Glatter, 1995), the requirement on light transmittance is claimed to be 

reduced from (I/I0)>95% to (I/I0)>70%. Similar work is also carried out by Hireleman (1988, 

1991) and Kokhanovsky and Weichert (2001). Their work concentrates on the calculation of the 

scattered intensities in the regime of multiple scattering. And the incident wave is assumed to be 

planar.  

In comparison with the RTE method, the Monte Carlo method is more flexible and has no 

special requirements on the incident profile of the beam, neither on the dimension, the shape, or 

the location of the detector. Therefore it finds more applications in direct numerical simulations 

of particle sizing in multiple scattering regime. By using the Monte Carlo method, influence of 

multiple scattering on the transmitted intensities reaching a detector of certain shape and 

dimension has been carried out by Bruscaglioni et al. (1987), Briton et al. (1992), and 

Czerwinski et al (2001a, b). Such a method is also to be employed by us to evaluate the multiple 

scattering effect for our optical system.  
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As to the diffusion regime at a much higher particle concentration (ξ≥10), it is not be concerned 

in this thesis since it is rarely encountered in wet steam measurement.  

4.2.3 Non-sphericity of the particle 

For non-spherical particle sizing, a popular way is to use the volume equivalent sphere for 

coefficient matrix calculation by applying the Mie theory. In this case, however, errors 

unavoidably appear with the inversed PSD and the amount of large particles is generally 

underestimated (Kocifag and Horvath, 2005). In multi-angle scattering experiments, the 

influence of particle’s non-sphericity on the inverse results has been studied by Heintzenburg 

(1978). To improve the measurement results, Liu et al. (1998) use both anomalous diffraction 

theory and T-matrix method to study the overall extinction efficiency of the randomly oriented 

circular cylinders of different diameter-to-length ratios (D/L). The extinction spectrum for the 

spheroids of randomly orientation is also studied by Asano and Sato (1980). It is found that the 

employment of T-matrix method and rigorous theory in non-spherical particles measurements 

can improve much the inverse results (Liu et al., 1999).  

4.3 Inversion algorithms 

Inverse problem is an important aspect of optical particle sizing. Although most optical means 

developed for particle system characterization, e.g., laser diffraction method (Allen, 1997), 

global rainbow method (van Beeck, 2001), and transmission fluctuation method (Shen et. al., 

2005) obtain the final PSD through discretizing the integral equations into matrix form and then 

solving it, the inverse problem in the SLEM seems more difficult than those in most of others. 

This is mainly due to the serious oscillation of the kernel function Qext versus particle size.  

To date, the inversion algorithms can be roughly classified into two types: dependent model and 

independent model. The dependent model algorithm assumes that the particle system conforms 

to a given unimodal size distribution, e.g., the Rosin-Rammler distribution and the logarithmic 

normal distribution (Stevensen et al., 1961; Kerker, 1969; Barth, 1984). Most of them can be 

characterized by two parameters: one is for the characterization of a special diameter, e.g., the 

diameter representing the peak value of PSD, while the other is for the restriction of the 

distribution width. These pre-assumed PSDs can be applied in some special industrial 
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processes where the size distribution of the particles can be empirically known. For example, the 

Rosin-Rammler function can be employed to model the particles generated in the grinding 

process; the logarithmic normal distribution can be used to represent most of colloidal 

populations frequently skewed. In these cases, the inversion becomes to determine the optimized 

values of these parameters leading to the best fitting of the reconstructed spectrum to the 

measured one. As dependent model algorithms, simplex iteration, quasi-Newton method and 

Powell algorithm, etc. (Adby and Demster, 1974) have the drawback that optimization might be 

trapped into the local optimized solutions instead that the global one is found (Xu et al., 2004b). 

Moreover, in most situations it is difficult for us to get any prior knowledge about the PSD 

shapes of the particles produced in most industrial processes.  

Thus, we turn to the independent model algorithm which does not make any assumption of the 

PSD in advance. The particle size solution is obtained directly by solving the Fredholm integral 

equations discretized into matrix form. A critical review of independent model algorithm has 

been given by Kandlikar and Ramachandran (1999). Among all the independent model 

algorithms, the Phillips-Twomey algorithm (Twomey, 1979) has been widely used. Its 

application in practical particle size analysis by using the SLEM has been done by Walters et al. 

(1980). To ensure the positive solution of the volume or number fraction in each size interval, 

the Phillips-Twomey method can be combined with the non-negative least square (NNLS) 

method (Lawson and Hanson, 1974) so that the Phillips-Twomey-NNLS algorithm is formed 

(Niemann and Weichert, 1995). However, the difficulty of the Phillips-Twomey-NNLS 

algorithm lies in the choosing of an optimized Lagrange multiplier γ which serves as an 

equilibration point ensuring both the smoothness of the PSD solution and the fitting of the 

reconstructed extinction spectrum to the measured one (King, 1982). To find such a point, the 

Generalized Cross-Validation (GCV) criterion (Golub et al., 1979) and the L-curve method 

(Hanson, 1992) are developed. According to the GCV criterion, the optimized value of the 

Lagrange multiplier corresponds to the minimum of an objective function with respect to γ. 

According to the L-curve method, however, the optimized value of the Lagrange multiplier 

locates at the corner of the objective function (presenting L-curve shape). Such a corner is 

characterized by the maximum curvature. The drawback of the GCV criterion is that the 

objective function might have a flat minimum, so it is difficult for us to find the best solution. 
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Moreover, the GCV criterion can not be applied to the occasions that correlated measurement 

errors exist. Though in the later situation L-curve method can be applied, it is not convergent for 

highly multimodal distributions (Hanke, 1996). As another effective independent model 

algorithm of great availability in optical particle sizing, the optimized regularization technique 

(ORT) is developed by Schnablegger and Glatter (1991). In such a method, a set of basic cubic 

Splines are introduced, each spline representing a basic size distribution function within a 

certain size window. Thus the inversion becomes to determine the weight coefficients multiplied 

with the basic PSDs. To ensure the positive solution, the NNLS method is used to determine 

these weight coefficients. To smooth the solution, the minimum of the first derivative of the 

coefficients is to be found. In the end, the optimization also becomes to find the best Lagrange 

multiplier balancing both the smoothness of solution and the fitting of the reconstructed 

spectrum to the measured one (Schnablegger and Glatter, 1995).  

Compared to the Phillips-Twomey-NNLS and the ORT algorithms, the genetic algorithm 

(Lienert et al., 2001, 2003; Li and Wilkinson, 2001) has no need to find the optimized 

regularization parameter. Within the framework of standard genetic algorithm, each value in the 

variable range of a parameter is assigned a sequence of binary digits (or gene) 0 and 1. The 

length of the sequence l depends on the required precision. For instance, to minimize the object 

function f (x1, x2) with constrains 1≤x1≤5, 100≤x2≤150, l1 has to be set as 12 for the precision of 

x1 being 0.001 and l2 has to be set as 9 for the precision of x2 being 0.1 (211≤ (5–1)/0.001≤212 

and 28≤ (150–100)/0.1≤29). The chromosome is a simple connection of the two arrays of the 

binary codes for x1 and x2, which leads to the whole length of the chromosome being l=l1+l2. 

With a random creation of the initial chromosome population, e.g., 50, the optimization begins 

and the performance of these individuals is judged by the evaluation function. Through an 

appropriate selection function, individuals with higher evaluation result have more chances to 

survive and be selected out to make crossover with each other. There are several schemes for 

such a selection process. As to the mutation, it is a simple flip from original “0” to “1” or 

inversely, “1” to “0” at a certain bit of the chromosome. With the passage of generation, GA 

converges to the optimum solution in the end. The convergence of GA has been proved 

mathematically and described as “Schema Theorem” (Michelewicz, 1996). However, GA is 

quite time-consuming: the requirement on high precision of results and the increase of size 
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intervals drastically increase the CPU time for inversion. Therefore so far it has not been widely 

applied in optical particle sizing. 

In addition to all these algorithms, the Chahine iterative algorithm (Ferri, 1989), the successive 

overrelaxation Method (Hageman and Young, 1981), the hybrid regularization method 

(Böckmann, 2001), etc., are also developed for different optical means of particle sizing because 

of their special advantages and characteristics. Since they do not have excellent performance in 

PSD inversion in the SLEM, here they are not introduced in detail.  

4.4 Organization of Part II 

The second part of the present thesis is organized into 4 chapters: Chapters 5 is contributed to 

the general statement of SLEM, including the basic principle and the inversion algorithms. 

Chapter 6 is contributed to the sensibility and stability test of the SLEM system and evaluation 

of measurement error by standard polystyrene particle sizing. Chapter 7 is contributed to online 

measurement of wet steam generated by an experimental turbine in R&D EDF. Finally, Chapter 

8 is contributed to the theoretical and experimental exploration of the applicability of the current 

system in measuring the wet steam of high concentration.  
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Chapter 5. Spectral Light Extinction Method 

In this chapter, we introduce the principle of the spectral light extinction method (SLEM) as 

well as the two independent model algorithms, the Phillips-Twomey-NNLS algorithm (Twomey 

algorithm) and the optimized regularization technique (ORT).  

5.1 Basic principle 

We consider an electromagnetic plane wave of wavelength λ in the medium and incidence 

intensities I0(λ). After traversing a distance Z through the homogeneous particulate medium, the 

transmitted intensities I(λ) can be calculated by the following Beer-Lambert law: 

 [ ]0( ) ( ) exp ( )I Iλ λ ξ λ= − , (5-1)

where the optical thickness ξ can be calculated from the turbidity τ by  

 Zξ τ= . (5-2)

When the particle concentration is low, the overall extinction can be considered as the 

superposition of the contribution by all single particles, so that for the monodisperse particles of 

the unique diameter D and the number concentration Cn (per unit volume), the turbidity τ is 

calculated by 

 
2

n ext ˆ( , , )
4
DC Q m Dπτ λ= , (5-3)

where Qext is the extinction coefficient of a single spherical particle and m̂  is the relative 

refractive index used for extinction coefficient calculation defined by  

 II Iˆ ˆ ˆ/ r im m m m m i= = + , (5-4)

where Im̂  and IIm̂  designate the refractive indices of the medium and the particle, respectively, 

and the subscripts r and i designate the real and imaginary parts, respectively.  

For polydisperse particles characterized by the normalized number frequency distribution n(D), 
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the turbidity τ is calculated by 

 
 2n

ext 0
ˆ( ) ( , , ) ( )

4
C Q m D n D D dDπτ λ λ

∞
= ∫ . (5-5)

Incorporating Eq.(5-5) into Eq.(5-2) and then utilizing Eq. (5-1), we obtain 

 
 2n

0 ext 0
ˆln( / ) ( , , ) ( )

4
CI I Z Q m D n D D dDπ λ

∞
= − ∫ . (5-6)

Via the following relationship between the normalized volume frequency distribution v(D) and 

the normalized number frequency distribution n(D):  

 
3

v n( ) ( )
6
DC v D C n Dπ

= . (5-7)

Eq. (5-6) is equivalent to 

 
 

0 v ext 0

3 ˆln( / ) ( , , ) ( ) /
2

I I C Z Q m D v D DdDλ
∞

= − ∫ , (5-8)

where Cv is volume concentration of the particles in the medium. Since n(D) and v(D) are 

normalized, their integral over D from zero to infinity tends to unity, namely: 

 
 

 0
( ) 1n D dD

∞
=∫ , (5-9)

 
 

 0
( ) 1v D dD

∞
=∫ . (5-10)

On the basis of Eq. (5-8), for a series of wavelengths selected from the spectrum corresponding 

to a light source of given bandwidth, we have 
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, (5-11)

where the volume frequency distribution (VFD) V(D) can be obtained from its normalized form 
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v(D) and the volume concentration Cv via the following relation:  

 v( ) ( )V D C v D= . (5-12)

Provide that the size range is discretized into n intervals, and we have (n+1) nodes designated by 

D0, D1, D2, …Dn. Assuming that the volume frequency jV  to be constant in each size interval 

[Dj-1, Dj], through discretization we have 

 
 

ext , 0
1

1 ˆ( , , ) ( )
n

i i j j
j

Q m D V D dD A V
D

λ
∞

=

=∑∫ , (5-13)

where each element in the coefficient matrix A(m×n) can be evaluated by 

 
1

 

, ext 
ˆ( , , ) /j

j

D

i j iD
A Q m D DdDλ

−

= ∫ . (5-14)

Finally, a linear equation set in matrix form can be established as follows: 

 /W E C AV= = , (5-15)

where C=–3Z/2 and the extinction spectrum vector E=[E1, E2…Em]T, where m is the number of 

wavelengths and each element Ei can be calculated by 

 0ln( / )
iiE I I λ= . (5-16)

Because of the oscillation of the Qext-D curve, the Fredholm integrals of the first kind contained 

in Eq. (5-11) bring in a seriously ill-posed coefficient matrix A characterized by a large 

condition number. Various optimization methods have been developed in the past several 

decades. Two of them, the Twomey algorithm and the ORT, are very effective for data inversion 

in SLEM and will be introduced in Subsection  5.2. 

When the solution vector V is known, the volume fraction of particle in each interval, jV∆ , can 

be calculated by 

 j j jV V D∆ = ∆ . (5-17)

Thereafter, the volume concentration of the particle can be obtained through the following 
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calculation: 

 ( )
1

n

v j
j

C V
=

= ∆∑ , (5-18)

and the normalized VFD can be obtained by 

 /j j vv V C= . (5-19)

The particle number in each size interval jN∆  can be obtained from its counterpart Vj:  

 
3

1

6 2
j j

j j

D D
N V π − +⎛ ⎞
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⎝ ⎠

, (5-20)

And the number concentration Cn and the normalized number frequency nj can be obtained, 

respectively, by 
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=
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∑  (5-21)

and 

 /j j nn N C= . (5-22)

In some situations, we also need to know the Sauter mean diameter (SMD), D32, which is 

defined by 

 

 3

 0
32  3

 0

( )

( )

D N D dD
D

D N D dD

∞

∞= ∫
∫

. (5-23)

Moreover, the volume and number mean diameters, 
50vD  and 

50nD , are the two parameters 

defined for characterization of the mean diameter of the PSD. The volume/number portions 

occupied by the particles with diameters below and over 
50vD /

50nD  are identical. To sufficiently 

characterize the PSD, more parameters 
03vD /

03nD , 
10vD /

10nD , and 
97vD /

97nD  are also used to 

characterize the PSD in some cases. This means that the volume/number portions occupied by 
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the particles with diameters below and over 
xvD /

xnD  are x% and (100–x)%, respectively. 

5.2 Inversion algorithms 

As discussed in Chapter 4, two types of algorithms, dependent and independent models can be 

distinguished to handle the inverse problem. It has been found that (Xu et al., 2004b), the 

drawback of the dependent model algorithm is that the particle size distribution (PSD) should be 

assumed to conform to a certain function shape which is generally characterized by two 

parameters e.g., the Rosin-Rammler (R-R) distribution (to be introduced in Subsection  5.4.1). 

Then the inversion becomes to determine their optimized values which minimize the deviation 

of the reconstructed extinction spectrum from the measured one, namely:  

 
( )max

0

F W AV

V

⎧ = −⎪
⎨

≥⎪⎩
. (5-24)

Generally, the objective function presents a multimodal distribution when measurement error 

exists. And for most dependent model algorithms, the optimization process which begins from a 

start point might be trapped into a local optimized solution.  Fig. 5.1 gives a contour of the 

objective function F, with 2% random error added to the extinction spectrum generated from a 

preassumed R-R PSD with parameters D =2.0 µm and K=4 through direct calculation via Eq. (5-

11). The aim of our algorithms is to search the minimum of F. An inappropriate start point 

might lead to finding of the local optimized values indicated by the text in normal font instead 

that of the global optimized value indicated by the text in bolt font. Although presetting several 

start points can reduce the adventure of finding the local optimized values, it is still difficult to 

know the potential locations of the global optimized parameters when random measurement 

errors exist. In addition, the dependent model algorithm can not handle the multimodal PSD 

inversion, which is characterized by more parameters.  
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Fig. 5.1  Contour of deviation evaluation function F. The extinction spectrum generated from a given R-R PSD 

( D =2.0 µm, K=4) of polystyrene particles dispersed in the pure water ( m̂ =1.590/1.333) is used as measured data, with 

random error 2% added. For dependent model algorithm, the task is to find the global minimum (indicated by the text in 

bold font). However, an inappropriate start point might lead to the finding of local minima (indicated by the text in 

normal font).  

To overcome the drawback of the dependent model algorithm, the independent model algorithm 

is used to directly inverse the PSD from the measured data of extinction spectrum. Both 

Twomey algorithm and ORT are employed because of their excellent performance in handling 

the data measured by SLEM.  

5.2.1 Phillips-Twomey-NNLS algorithm  

Due to the extremely large condition number of coefficient matrix A, Eq. (5-15) can not be 

straightforward solved via the mathematical operation V=A–1W. To reduce the condition number 

of the matrix, Twomey introduces a smoothing matrix H multiplied by a Lagrange factor γ so 

that following equation is brought in (Twomey, 1979; Markowski, 1987):  

 T T( )A A H V A Wγ+ = , (5-25)

where 
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1 2 1 0 0 ... 0
2 5 4 1 0 0 ...

1 4 6 4 1 0 ...
... ... ... ... ... ... ...
0 ... 1 4 6 4 1

H

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

. (5-26)

Thus the inversion becomes the minimization of Eq. (5-25), namely,  

 T Tmin ( )A A H V A Wγ⎡ ⎤+ −⎣ ⎦ , (5-27)

To ensure the positive solution of V (V≥0), the non-negative least square (NNLS) algorithm is 

used to solve Eq. (5-25) (Lawson and Hanson, 1974).  

It is noteworthy that an appropriate choice of the Lagrange factor γ is significant for ensuring the 

quality of inversion, since a too small γ leads to the oscillation of PSD while a too large one 

makes an obvious disagreement of the measured spectrum and the reconstructed one from the 

inversed concentration and PSD. To find a balance between the two extreme situations, the 

“Generalized Cross-Validation (GCV) method” is proposed (Golub et al., 1979). According to 

the GCV method, the balance point can be found through minimizing the following function U 

with respect to γ: 

 
{ }

2T 1 T

T 1 T

( )
( )

( )

I A AA H A W
U k

Tr I A A T H A

γ
γ

γ

−

−

⎡ ⎤− +⎣ ⎦=
⎡ ⎤− +⎣ ⎦

, (5-28)

where k is the order of the matrix and I is the identity matrix. “|…|” represents the norm of a 

matrix and “Tr” represents the trace of the matrix. 

However, as discussed in Chapter 4, the drawback of GCV is that the objective function U(γ) 

might have a flat minimum so that it is difficult for us to find the best solution. Moreover, GCV 

cannot be applied in the occasions when correlated measurement errors exist. Therefore in our 

inversion process, the optimized Lagrange factor γ is empirically determined.  

5.2.2 Optimized regularization technique 

The optimized regularization technique (ORT) is first introduced by Schnablegger and Glatter 
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(1995). Its basic idea is the assumption of PSD to be the superposition of a series of B-splines. 

Each spline has its own size window [Dj, D j, j+k] for jth spline (k is the order of the spline). Then 

the inversion becomes to determine the weight coefficients multiplied with these splines.  

5.2.2.1 B-splines 

A well-conditioned basis of the B-splines B={ 0,kN , 1,kN , 2,kN ,…, ,n kN } can be obtained by the 

recursion formulas as follows: 

 1
,1

1         
( )

0        otherwise
j j

j

D D D
N D +≤ ≤⎧

= ⎨
⎩

, (5-29)

 , , 1 1, 1
1 1

( ) ( ) ( )j j k
j k j k j k

j k j j k j

D D D D
N D N D N D

D D D D
+

− + −
+ − + +

− −
= +

− −
, (5-30)

where Dj are the knots, with j=0, 1, 2, …, n+k as well as 0D ≤ 1D ≤ 2D ≤…≤ n kD + . Nj, k(D) are the 

B-spline of order k with bearing interval [ jD , j kD + ].  Fig. 5.2 gives an example of the B-splines 

of k=4 and n=6. 
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Fig. 5.2 B-splines used for PSD construction, in the figure are plotted seven B-splines of order 4 (k=4).  
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5.2.2.2 Matrix construction 

The particle size distribution can then be expressed in terms of B-splines multiplied by a set of 

weight coefficients cj: 

 ,
0

( ) ( )
n

j j k
j

V D c N D
=

=∑ . (5-31)

Thus, Eq. (5-8) can be written into the following form: 

 
 

0 ext , 
0

3 ˆln( / ) ( , , ) ( ) /
2

j k

j

n D

j j kD
j

ZI I c Q m D N D DdDλ+

=

= − ∑ ∫ , (5-32)

Then the matrix form of the equation set can be written as 

 W Ac= , (5-33)

where 

 
 

, ext , 
ˆ( , , ) ( ) /j k

j

D

i j i j kD
A Q m D N D DdDλ+= ∫ . (5-34)

Through solving Eq. (5-33) by Twomey algorithm introduced in Subsection  5.2.1, the weight 

coefficients cj are obtained. Then the VFD and the volume concentration can be obtained by Eq. 

(5-31) and Eq. (5-18), respectively. The NFD and the number concentration can be obtained 

accordingly from Eq. (5-20) and Eq. (5-21), respectively. 

5.3 Presentation of the software TURACE 5.0 

To meet the requirement of current studies, the software TURACE has been designed and 

developed by the author from the version 1.0 to version 5.0 in the past three years. At present it 

has following functions: 

A. Direct calculation of the extinction spectrum from a given droplet distribution and the 

corresponding inversion with/without random error, which permits us to evaluate the sensibility 

of the algorithms to the random errors generated in practical measurements; 
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B. Online particle size and concentration analysis; 

C. Demonstration of the extinction coefficient curve for a given refractive index of the particle; 

D. Continuous acquisition of spectra from single or dual channels with regulable time interval; 

E. Online statistical analysis of the instabilities of the intensity spectrum as well as extinction 

spectrum; 

F. Post processing of the saved spectra, e.g., calculation of the standard deviation of extinction 

spectra, and statistical analysis of the measured results to obtain the mean SMD, volume and 

number concentration of the particle system.  

Function A is used in the current chapter. Function B is used in Chapter 7 for online wet steam 

measurement. Functions D-F are used in Chapter 6 for sensibility and stability test of the SLEM 

system. A brief presentation of the software can be found in Appendix F. 

5.4 Numerical investigation of inversion algorithms 

In this section we test the resistance of the inversion algorithm to the random measurement error 

by numerical simulation. The process can be briefly introduced as follows: first, a particle 

system with given PSD and concentration is assumed so that a series of extinction spectrum is 

generated by direct calculation indicated by Eq. (5-11). Next, the random error is added to the 

spectrum and such a spectrum is used as the “measured” data for inversion. Finally, the 

inversion results of PSD and concentration are compared to the given ones to evaluate the 

performance of the inversion algorithms.  

5.4.1 Rosin-Rammler distribution 

We use the R-R distribution to construct the unimodal, bimodal and multimodal PSD. The 

volume accumulation function of a unimodal R-R distribution can be described by 

 ( ){ }v( ) 1 exp /
K

aV D C D D⎡ ⎤= − −
⎣ ⎦

, (5-35)

where Cv is the volume concentration of the particles, D  is the characteristic diameter 
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corresponding to the maximum value of volume frequency distribution to be indicated by Eq. 

(5-36), and K is the distribution factor. For a given unimodal distribution, the smaller K is, the 

wider the PSD becomes. Via differential processing of Eq. (5-35), the volume frequency 

distribution function can be yielded as follows: 

 ( ) ( ){ }1
v( ) / / exp /

K KadVV D C K D D D D D
dD

− ⎡ ⎤= = −
⎣ ⎦

. (5-36)

On the basis of the unimodal R-R distribution, we have the following expression for the volume 

accumulation function of N-modal PSD: 

 ( ){ }a v, 
1

( ) 1 exp / i
N K

i i
i

V D C D D
=

⎡ ⎤= − −
⎣ ⎦∑ . (5-37)

When N=1, the unimodal PSD is recovered. When N=2, the bimodal PSD is recovered. Cv, i is 

the volume concentration of the particle population i. Then the total volume concentration is 

 v v, 
1

lim ( )
N

iD i
C V D C

→∞
=

= =∑ . (5-38)

And the normalized VFD is 

 ( )( )( ) ( )1
v, 

1
( ) ( ) / / / / exp /i i

N K K
i v i i i i

i
v D dV D dD C C K D D D D D

−

=

⎡ ⎤= = −
⎣ ⎦∑ . (5-39)

The corresponding NFD is 

 ( )( )( ) ( )13
v, 

1

( )( ) 6 / / / / exp /i i
N K K

i v i i i i
i

dN Dn D D C C K D D D D D
dD

π
−

=

⎡ ⎤= = −
⎣ ⎦∑ . (5-40)

5.4.2 Inversion without measurement errors 

5.4.2.1 Inversion of unimodal particle size distribution 

First, a unimodal R-R PSD of the spherical water droplets ( m̂ =1.333) with a given set of 

distribution parameters is used for generating the basic extinction spectrum, which is then used 

for inversion. The particle diameter range [0.01, 5.00] µm is discretized into 101 intervals. The 

extinction spectrum is calculated for 100 equidistant points within the visible wavelength range 
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[0.40, 0.95] µm. The parameters used for numerical calculations are listed in  Table 5.1. The 

inversed results of the SMDs D32 and volume concentrations Cv, as well as their deviations from 

the pre-assumed values are listed in  0. The original and inversed PSDs are presented in  Fig. 5.3a 

(for PSD1) and  Fig. 5.4a (for PSD2). Comparison of the original and reconstructed spectra can 

be found in  Fig. 5.3b (for PSD1) and  Fig. 5.4b (for PSD2). For both PSD1 and PSD2, the 

agreement between the initial and reconstructed spectra is found satisfactory. And for both 

narrow (PSD1) and wide (PSD2) size distributions the absolute errors with both SMDs and 

volume concentrations are weak (less than ~1.0% for D32 and 0.6% for Cv).  

Table 5.1 Parameters used  for simulation of unimodal PSD inversion 

PSD PSD1 PSD2 Parameters for inversion 

Cv 1×10–6 Wavelength 
range 

[0.40-0.95] µm (100 
equidistant points) 

( D , K) D =1.0 µm, 
K=20 

D =1.0 µm, 
K=4 [Dmin, Dmax] [0.01-5.0] µm (100 intervals)

Twomey: γ=0.01 
D32 0.969 µm 0.816 µm Lagrange 

Multiplier 
ORT: γ=0.05 (n=98) 
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Table 5.2 Comparison of the given and inversed SMDs and volume concentrations  

 PSD1 PSD2 

D32 given (µm) 0.969 0.816 

Twomey 0.970 0.815 D32 inversed 
(µm) ORT 0.967 0.824 

Twomey +0.050 –0.128 
Error of D32 (%) 

ORT –0.277 +1.014 

Cv given (E–6) 1.000 1.000 

Twomey 1.006 0.998 Cv inversed  

(E–6) ORT 1.015 1.076 

Twomey +0.577 –0.225 
Error of Cv (%) 

ORT +0.154 –0.108 
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Fig. 5.3 Inversed results for unimodal distribution PSD1. (a): Original and inversed PSDs; (b): Original and 

reconstructed extinction spectra.  
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Fig. 5.4 Inversed results for unimodal distribution PSD2. (a): Original and inversed PSDs; (b): Original and 

reconstructed extinction spectra.  

5.4.2.2 Inversion of bimodal particle size distribution 

In the same way, the bimodal distribution is assumed to generate the basic extinction spectrum 

for inversion. The bimodal droplet system is composed of two subunimodal PSDs of equal 

volume quotients and with distribution parameters ( D , K) being (1.0 µm, 4.0) and (2.5 µm, 8.0), 

respectively. The inversion parameters are set same as those for unimodal PSD (see  Table 5.1). 

Comparison of the given and inversed PSD and spectra is illustrated in  Fig. 5.5, indicating that 

both algorithms can retrieve the two main peaks existing with the pre-assumed PSD, though a 

redundant peak appears at the vicinity of D=3.7 µm. The inversed SMDs D32 and volume 

concentrations Cv are listed in  Table 5.3, from which we can find that for both algorithms the 

deviations of the inversed SMDs D32 from the given value are less than ~5.0% and the 

deviations of the inversed volume concentrations Cv from the given value are less than ~10.0%. 

These deviations are more obvious than their counterparts for unimodal distribution, which 

means that the accuracies reduce when we measure the bimodal PSD. 
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Table 5.3 Comparison of the given and inversed SMDs and volume concentrations  

 PSD2+PSD3 

( D , K) PSD2: (1.0 µm, 4.0)+PSD3: (2.5 µm, 8.0) 

Volume Percentage 50%, 50% 

D32 given (µm) 1.203 

Twomey 1.165 D32 inversed 
(µm) ORT 1.142 

Twomey –3.226 
Error of D32 (%) 

ORT –5.079 

vC  given (E–6) 1.000 

Twomey 1.053 
vC  inversed  

(E–6) ORT 1.101 

Twomey 5.255 
Error of vC  (%) 

ORT 10.080 
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Fig. 5.5 Inversed results for bimodal particle size distribution. The droplet size distribution is composed of two 

subunimodal PSDs of equal volume quotients and with distribution parameters ( D , K) being (1.0 µm, 4.0) and (2.5 µm, 

8.0), respectively. (a): Original and inversed PSDs; (b): Original and reconstructed extinction spectra. 

5.4.3 Inversion with measurement errors 

In the preceding subsection, inversions are made for the ideal situation when no measurement 

errors exist. However, in realistic situation, measurement errors are unavoidable. Therefore in 

this subsection, we evaluate the resistance of the two inversion algorithms to these errors. 

5.4.3.1 Inversion of unimodal particle size distribution 

The parameters for the two inversion algorithms are the same as those used for unimodal PSD 

inversion (see  Table 5.1), but random errors of level 0.1% and 1.0% are added to the basic 

extinction spectrum generated from PSD2 with distribution parameters ( D , K) set as (1.0 µm, 

8.0). One hundred simulated extinction spectra are used to obtain the mean inversed SMD D 32 

and volume concentration vC , which are listed in  Table 5.4. It is indicated that when the 

measurement error level increases from 0.1% to 1.0%, the absolute error of the mean inversed 

SMD D 32 increases from ~0.3% to ~5.7% for Twomey algorithm and from ~1.2% to ~7.6% for 

ORT, and the absolute error of the mean inversed volume concentration vC  increases from 

~0.8% to ~8.8% for Twomey algorithm and from ~0.3% to ~5.2% for ORT. 
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Table 5.4 Comparison of the given and the averaged results of the inversed SMDs D32 and volume concentrations Cv 

(100 spectrum samples used) 

 
PSD2 

(0.1% error) 

PSD2 

(1.0% error) 

D32 given (µm) 0.816 

Twomey 0.818 0.769 D 32 inversed 
(µm) ORT 0.826 0.878 

Twomey 0.321 –5.746 
Error of D 32 (%) 

ORT 1.220 7.646 

Cv given (E–6) 1.000 

Twomey 1.008 1.088 
vC  inversed 

(E–6) ORT 1.003 1.052 

Twomey 0.817 8.828 
Error of vC  (%) 

ORT 0.257 5.156 

In  Fig. 5.6a- Fig. 5.7a are listed the inversed results of PSD from one of the 100 extinction 

spectra. It is found from the inversed PSD that the main peak existing with the original PSD can 

be retrieved by both algorithms. For the same particle size distribution (PSD2), comparison of 

 Fig. 5.4a with  Fig. 5.6a indicates that the error level of 0.1% has little influence on the 

measurement results. However, for the error level of 1.0%, a redundant peak appears at the 

vicinity of D=3.5 µm, as can be found in  Fig. 5.7a. The appearance of the redundant peak 

indicates that the inverse results become more inaccurate with the increase of measurement 

errors, though the agreements between the reconstructed spectra and the given ones are still 

found excellent for all these error levels, as indicated by  Fig. 5.6b- Fig. 5.7b. 



 Chapter 5. Spectral Light Extinction Method 

 142

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Diameter (µm)

V
ol

um
e 

Fr
eq

ue
nc

y 
D

is
tr

ib
ut

io
n 

(V
(D

))

Original PSD
Inversed PSD (Twomey)
Inversed PSD (ORT)

0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

λ (µm)

−
L

n(
I/

I 0)

Original Extinction Spectrum
Reconstructed Spectrum (Twomey)
Reconstructed Spectrum (ORT)

 

                                      (a)                                                                         (b) 

Fig. 5.6 Comparisons of the inversed results and the given ones (0.1% random error added). (a) Given and inversed 

PSDs; (b) Given and reconstructed spectra. 
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Fig. 5.7 Comparisons of the inversed results and the given ones (1.0% random error added). (a) Given and inversed 

PSDs; (b) Given and reconstructed spectra. 
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Fig. 5.8 The SMDs D32 and volume concentrations Cv for 100 samples of extinction spectra with error levels 0.1% 

and 1.0%. The solid curve represents the results calculated by the Twomey algorithm and the dotted curve represents the 

results calculated by the ORT. (a): SMDs D32; (b) Volume concentrations Cv. 

In  Fig. 5.8 is plotted the SMDs D32 and the volume concentrations Cv for all the 100 simulated 

extinction spectra, from which average result of D32 and Cv are calculated and listed in  Table 5.4. 

Fluctuations of the D32 and Cv curves corresponding to the Twomey algorithm are found more 

drastic than those corresponding to the ORT, which indicates that the ORT is a more stable 

algorithm in data inversion. But for both algorithms, these fluctuations become more obvious 

with the increase of error level. 

5.4.3.2 Inversion of bimodal particle size distribution 

The basic extinction spectrum is calculated from an assumed PSD composed of two R-R 

subunimodal distributions of equal volume quotients and with parameters ( D , K) being (1.0 µm, 

4.0) and (2.5 µm, 8.0), respectively. The errors of levels 0.1% and 1.0% are added to the basic 

extinction spectrum, respectively. The parameters for the two inversion algorithms are set same 

as those for unimodal PSD inversion (see  Table 5.1). Also, one hundred spectra are generated 

for a given error level. Then the mean inversed SMDs D 32 and mean volume concentrations vC  

are calculated and listed in  Table 5.5. It is indicated that when the measurement error level 

increases from 0.1% to 1.0%, the absolute error of the mean inversed SMD D 32 increases from 

~2.4% to ~20.1% for Twomey algorithm and from ~4.0% to ~14.5% for ORT, and the absolute 
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error of the mean inversed volume concentration vC  increases from ~6.2% to ~18.4% for 

Twomey algorithm and from ~11.3% to ~20.3% for ORT. 

Table 5.5 Comparison of the given and the averaged results of the inversed SMDs D32 and volume concentrations Cv 

(100 spectrum samples used) 

 PSD2+PSD3 
(0.1% error) 

PSD2+PSD3 
(1.0% error) 

( D , K) 
PSD2: (1.0 µm, 4.0) +  

PSD3: (2.5 µm, 8.0) 

Volume Percentage 50%, 50% 

D32 given (µm) 1.203 

Twomey 1.174 0.961 D 32 inversed 
(µm) ORT 1.155 1.029 

Twomey –2.410 –20.116 Error of D 32 
(%) ORT –3.990 –14.464 

vC  given (E–6) 1.000 

Twomey 1.062 1.184 
vC  inversed 

(E–6) ORT 1.113 1.203 

Twomey 6.211 18.427 
Error of vC (%) 

ORT 11.340 20.315 

The inversed PSDs as well as the comparisons of the given spectra with the reconstructed ones 

are illustrated in  Fig. 5.9- Fig. 5.10. As can be found in  Fig. 5.9a, when 0.1% error is added, the 

two main peaks of the inversed PSDs are essentially same as the those existing with the given 

PSD, though a redundant peak appears at the vicinity of D=3.7 µm. Such a result is nearly same 

as that inversed in the situation of no measurement error existing (see  Fig. 5.5a). When the error 

level increases to 1.0%, the two peaks can still be recognized (see  Fig. 5.10a), but the redundant 

distribution also becomes more obvious. We can not affirm that the appearance of the redundant 
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peaks is due to the drawback of algorithm, since the PSDs with spoiled peaks also lead to a 

satisfactory agreement of the reconstructed and given spectra, as indicated by  Fig. 5.10b- Fig. 

5.11b. When we compare the reconstructed spectra associated with the random errors of all the 

levels in a same figure, very little difference among them can be distinguished (see  Fig. 5.11). 

Numerical simulations show that for a further larger error level (e.g., ≥2.0%), several essentially 

different PSDs might correspond to a nearly same extinction spectrum. Such a phenomenon is 

found more obvious when multimodal PSD is concerned. It is mainly caused by the oscillation 

nature of Qext-D curve and the multiple value relation between Qext and D. In this case, PSD 

inversion becomes more difficult or even impossible.  
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                                       (a)                                                                          (b) 

Fig. 5.9 Comparison of the inversed results and the given ones (0.1% random error added). (a) Given and inversed 

PSDs; (b) Given and reconstructed spectra. 
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     (a)                                                                          (b) 

Fig. 5.10 Comparison of the inversed results and the given ones (1.0% random error added). (a) Given and inversed 

PSDs; (b) Given and reconstructed spectra. 
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Fig. 5.11 Comparison of the reconstructed spectra corresponding to the error levels 0.1% and 1.0%.  

In  Fig. 5.12 are plotted the SMDs D32 and volume concentrations Cv for 100 spectrum samples, 

from which their average values are obtained and listed in  Table 5.5. For the same error level, 

the fluctuations of both the SMDs D32 and the volume concentrations Cv inversed by the 

Twomey algorithm and the ORT are found to be nearly on the same level.  
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                                       (a)                                                                        (b) 

Fig. 5.12 The SMDs D32 and volume concentrations Cv for 100 samples of extinction spectra with error levels 0.1% 

and 1.0%. The solid curve represents the results calculated by the Twomey algorithm and the dotted curve represents the 

results calculated by the ORT. (a): SMDs D32; (b) Volume concentrations Cv. 

5.5 Conclusion 

The principle of SLEM is introduced in this chapter. By numerical simulation, performance of 

the Twomey algorithm and the ORT is investigated. We found both algorithms are capable of 

handling unimodal and bimodal PSD inversion. Numerical simulation indicates that the ORT is 

more stable than the Twomey algorithm in the existence of measurement error. The deviations 

of the inversed SMDs and volume concentrations from the given ones become more obvious 

with the increase of error level. For unimodal PSD inversion by ORT, for example, when the 

error level increases from 0.1% to 1.0%, the absolute error of the inversed SMD D 32 increases 

from ~1.2% to ~7.6%, and the absolute error of the inversed volume concentration vC  increases 

from ~0.3% to ~5.2%. For bimodal PSD inversion, the resistance of both algorithms to the 

random error is reduced. To improve the precision of the measurement results, the measurement 

should be as exact as possible and the monodispersity of the particle system should be as high as 

possible.  
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Chapter 6. Sensibility and Stability of Measurement System 

In this chapter, we carry out the experimental studies of the stability and sensibility of the 

measurement system, which might cause error to the measurement results of particle size and 

concentration. The test is mainly for the light source and the spectrometer. On such a basis, the 

sensibility of the SLEM system to the slight variation of the particle concentration is explored. 

Finally, we apply the spectral light extinction method in experimental standard polystyrene 

particle sizing to explore the applicability of the developed optical system. 

6.1 Stability of the light source 

This study includes obtaining the spectra emitted by a halogen lamp and a deuterium + halogen 

lamp (DH 2000) to analyze the level of spectral fluctuation in time domain. The typical usable 

wavelength range of a halogen lamp (HL 2000) is 0.35-1.00 µm. And the usable wavelength 

range of the DH 2000 is 0.23-1.10 µm. The main characteristics of these light sources provided 

by the manufacturer can be found in the Appendix G. The light sources are illustrated in  Fig. 6.1. 

Two types of spectrometers are prepared for the measurements, SD 2000 (Ocean Optics), with 

two channels, maximum acquisition frequency of 200 Hz, and detectable wavelength range 

[0.35-1.1] µm, and HR 2000+ (Ocean Optics), with one channel, maximum acquisition 

frequency of 1000 Hz, and the detectable wavelength range is 0.20-1.1 µm. Both of them are 

based on the CCD of 2048 pixels, corresponding to 2048 wavelength. The two spectrometers are 

illustrated in  Fig. 6.2. More detail on the characteristics of the spectrometers given by the 

manufacturer can be found in Appendix H. The advantages of these spectrometers include 

1. Simultaneous acquisition of signals of all wavelengths;  

2. Easy operation;  

3. Acquisition subroutine incorporable into the data processing software with a friendly 

interface to users.  

Since the temperature change or mechanical vibration might cause wavelength shift to the 
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spectrometer, the spectral lamps, Hg and Cd lamps (see   Fig. 6.1) with given spectral lines of 

emission are used for wavelength calibration. 

 

Fig. 6.1 Light sources used in the experiments. 

 

Fig. 6.2 Spectrometer SD 2000 and HR 2000+ used in SLEM system. 

The stability of the light source depends on the following several factors:  

HL 2000 Lamp 

Spectral Lamp 

DH 2000 BAL Lamp 

HR 2000+ 
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1.  The stability of the electric current;  

2.  The fluctuation of the temperature;  

3.  The mechanical stability of the experimental setup.  

Before carrying out the experimental studies on fluctuation studies, we discuss the calibration of 

the SLEM system and the two statistical parameters for characterizing the standard deviation of 

the intensity.  

6.1.1 Calibration of the system 

The detection and elimination of the white noise is a necessary step before practical 

measurement. It is done in the following way: we turn off the light source and save a series of 

noise spectra acquired by the two channels. Then two averaged noise spectra, corresponding to 

the two channels of the spectrometer, are calculated and recorded. They will be subtracted from 

the later measured intensity spectra automatically.  Fig. 6.3 gives a plot of two typical white 

noise spectra detected by the two channels in a dark room. 

When SD 2000 is used for online particle sizing, the intensity measured by its channel Master 

I0,ori(λ) and that measured by channel Slave, 0I (λ) must be calibrated before the entering of the 

particles. This is because the sensibility of the two detectors in these channels is different and 

the optical paths from the light source to them are not identical. The calibration, i.e. 

determination of the intensity ratio coefficients C0(λ)=I0(λ)/I0,ori(λ) for all the wavelengths 

detected by the two channels is necessary before carrying out particle sizing. Once C0(λ) is 

obtained, I0 can be obtained by I0(λ)= C0(λ)I0,ori(λ) during the measurement process.  Fig. 6.4 

gives a typical plot of intensity ratio coefficients versus wavelength. It shows clearly that the 

“sensibility” of the two channels varies much with the wavelength. After the calibration the 

spectra acquired from the two channels when no absorbing medium exists are nearly identical, 

as indicated by  Fig. 6.5. In the existence of the particles or other absorbing media, the intensities 

of transmitted light I(λ) which are smaller than the incidence intensities I0(λ) and detected by the 

channel Slave are measured so that the transmittance ratios T(λ) and the extinction ratio E(λ) can 

be obtained.  
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Fig. 6.3 White noise. 
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Fig. 6.4 Intensity ratio coefficients C0(λ). 
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Fig. 6.5 Spectra acquired from the two channels after intensity calibration and noise elimination. 

6.1.2 Mean standard deviation of intensity 

The fluctuations of the light source are characterized by two types of statistical parameters: the 

mean standard deviation of the average intensity, σ, and the mean standard deviation of intensity 

with respect to the wavelength, σλ, which is to be discussed in the following subsections. 

a)  Mean standard deviation of the average intensity 

For each spectrum, we calculate the mean intensity for a selected range of wavelength, 

corresponding to a given number (N) of wavelengths among the original 2048 ones. The average 

intensities I(λ) is calculated by 

 i
i 1

( )
N

I
I

N

λ
==
∑

. (6-1)

For a series of M spectra, the mean intensity is calculated by 
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And the mean standard deviation (MSD) of the average intensity is calculated by 
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(6-3)

Such a standard deviation (SD) characterizes the instabilities for a wavelength range. In addition, 

we define the following relative MSD of the average intensity: 

 r
II

σσ = . (6-4)

b) Mean standard deviation of intensity with respect to the wavelength 

The MSD defined in the preceding subsection does not sufficiently reflect the intensity 

fluctuation for a given wavelength. In order to characterize the fluctuation of intensity for each 

wavelength, we define the MSD of intensity with respect to the wavelength as follows: 

 i
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λ

N
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σ
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∑
, (6-5)

where the SD of intensity with respect to each wavelength, σi, is calculated from M spectra for a 

same wavelength: 
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where i( )I λ  is the mean intensity of M measured spectra corresponding to the same wavelength 

iλ :  
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In addition, we define the relative MSD of intensity with respect to the wavelength as follows: 

 λ
λ, r

II
σσ = . (6-8)

The two standard definitions defined in the present subsection are for the incidence intensities 

I0(λ) and the transmitted ones I(λ). Since the spectra from both channels can be simultaneously 

acquired by the spectrometer SD 2000 for online particle sizing, the two standard definitions for 

transmission ratios, T=I(λ)/I0(λ), are defined in the same way as that for I0(λ) and I(λ). In the 

measurements, I(λ) is detected by channel Slave and I0(λ) is detected by channel Master so that 

we have T= IS(λ)/IM(λ). When no absorbing medium exists, T should be unity for all wavelengths.  

6.1.3 Measurement results 

To get stable intensity, the lamp is turned on at least 15 minutes before the measurement.  Fig. 

6.6 shows an example of typical evolution of the mean intensities detected by the two channels 

of the spectrometer for the lamp DH 2000. Statistics are made for the wavelength range [0.35, 

1.0] µm. The relative MSD of the average intensity detected by channels Master and Slave are 

0.014% (0.065/476.04) and 0.012% (0.058/475.86), respectively. And the relative MSD of the 

average transmission ratio is 0.017% (0.00017/0.99962).  Fig. 6.7 gives an example of the 

evolution of SD of intensity with respect to the wavelength. For the wavelengths within [0.35, 

1.0], its mean value is 0.056% (0.268/476.04) for Channel Master and 0.056% (0.265/475.86) 

for Channel Slave. And the maximum value is ~0.084% (0.4/476), corresponding to the 

wavelength at the vicinities of 0.65 and 0.90 µm. The MSD of the transmission ratio with 

respect to the wavelength detected by the two channels is 0.10%. 
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Fig. 6.6 Typical mean intensity acquired by the two channels of SD 2000. 

 

Fig. 6.7 Typical SD of intensity with respect to the wavelength (the red and blue curves represent the SDs of IM and 

IS measured from channel Master and channel Slave, respectively. 

We use “Integration time TI”, “Sample number Sn”, and “Boxcar of wavelength Bw” as three 

main parameters for spectrum acquisition. More integration time TI is used, more light flux is 

collected. The spectrometer acquires Sn spectra, calculates the mean intensities for each 
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wavelength λi and transfers them to the computer. In addition, for each wavelength λi, the 

spectrometer factually exports an average value of the intensities detected by Bw pixels (boxcar 

of wavelength) corresponding to the Bw wavelengths in the vicinity of λi.  

In addition to these parameters, “Number of wavelength (Nw)” is defined as the number of 

wavelength re-selected by in the software TURACE 5.0 for inversion as well as the “Time 

interval of acquisition (∆T)” indicating the pause time between two continuous spectral 

acquisitions. And to make the statistics, a series of Ns spectra are measured for mean incidence 

and transmitted intensities calculation for each wavelength. 

In order to characterize the fluctuation of the intensities of the light source, several series of 

spectra have been acquired with different values of these parameters, e.g., the time interval of 

acquisition ∆T, the sample number Sn, and the boxcar of wavelength Bw. For each acquisition, 

the SDs defined in Subsection  6.1.2 are calculated for the intensities detected by both channels 

(IM and IS) as well as the transmission ratios (IS/IM). 

Results of the two types of statistical parameters of the fluctuations measured from the light 

sources HL 2000 and DH 2000 are listed in  Table 6.1- Table 6.2. The relative MSD of the 

average intensity ratio and the relative MSD of intensity ratio with respect to the wavelength are 

in bold font. 

Through analyzing the data listed in  Table 6.1- Table 6.2, we comment that the MSD of the 

average intensity ratio (transmittance ratio, IS/IM) is very weak in all the cases studied. Relative 

to the mean intensity ratio, its value is between 0.021% and 0.060% for the light source HL 

2000 and between 0.018% and 0.028% for the light source DH 2000. The MSD is also small for 

IM and IS, the intensities measured from channel Master and channel Slave, respectively. These 

values do not show high dependence on the integration time TI, the boxcar of wavelength Bw, or 

the sample number Sn for each spectrum. Although the fluctuation could be further weakened by 

increasing their values, it is not suggested for online particle sizing. Relative to the mean 

intensity ratio, the MSD of intensity ratio with respect to the wavelength is less than 0.21% for 

HL 2000 and 0.1% for DH 2000. Numerical simulation indicates that such a noise level is weak 

enough to have negligible influence on the measurement results. Thus the stability of the light 
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sources HL 2000 and DH 2000 is confirmed. 

Table 6.1 Test of the stability of the light source HL 2000 (The spectrometer SD 2000 is used and IM denotes the 

intensity detected by channel Master and IS denotes the intensity detected by channel Slave). 

Integration time (TI, ms) 5 5 5 5 

Sample number (for averaging, Sn) 5 5 5 50 

Boxcar of wavelength (Bw) 1 5 5 5 

Selected range of wavelength  (µm) 0.35-0.95 0.35-0.95 0.35-0.95 0.35-0.95

Number of wavelength (Nw) 200 200 200 200 

Time interval of acquisition (∆T, ms) 10 1 10 10 

Number of spectra (Ns) 100 100 100 100 

Mean intensity (Master, IM) 433.11 433.91 434.71 434.98 

Mean intensity (Slave, IS ) 438.17 436.92 435.97 435.01 

Mean intensity ratio (IS/IM) 1.0117 1.0069 1.0029 1.0001 

MSD of average intensity IM 0.0721 0.2386 0.0634 0.1015 

MSD of average intensity IS 0.1220 0.1995 0.0603 0.1241 

MSD of average intensity ratio IS/IM 0.000369 0.00060 0.00021 0.00034 

Relative MSD of average intensity ratio 
IS/IM (%)  0.037 0.060 0.021 0.034 

MSD of intensity IM with respect to λ 0.5296 0.3359 0.2803 0.1273 

MSD of intensity IS with respect to λ 0.5435 0.3687 0.2998 0.1514 

MSD of intensity ratio IS/IM with respect 
to λ 0.0021 0.0013 0.0011 0.00049 

Relative MSD of intensity ratio IS/IM with 
respect to λ (%)  0.21 0.12 0.11 0.05 
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Table 6.2 Test of the stability of the light source DH 2000 (The spectrometer SD 2000 is used and IM denotes the 

intensity detected by channel Master and IS denotes the intensity detected by channel Slave). 

Integration time (TI, ms) 20 20 20 20 

Sample number (for averaging, Sn) 5 10 10 10 

Boxcar of wavelength (Bw) 5 5 10 10 

Selected range of wavelength  (µm) 0.35-0.95 0.35-0.95 0.35-0.95 0.35-0.95

Number of wavelength (Nw) 200 200 200 200 

Time interval of acquisition (∆T, ms) 10 10 1 1000 

Number of spectra (Ns) 100 100 100 100 

Mean intensity (IM) 476.04 476.16 477.64 478.83 

Mean intensity (IS) 475.86 475.78 477.51 478.81 

Mean intensity ratio (IS/IM) 0.99962 0.99920 0.99951 0.99996

MSD of average intensity IM 0.0648 0.0934 0.0734 0.1236 

MSD of average intensity IS 0.0574 0.0556 0.0386 0.0570 

MSD of average intensity ratio IS/IM 0.00018 0.00026 0.00017 0.000282

Relative MSD of average intensity ratio 
IS/IM (%)  0.018 0.026 0.017 0.028 

MSD of intensity IM with respect to λ 0.2680 0.2150 0.1545 0.2028 

MSD of intensity IS with respect to λ 0.2651 0.2080 0.1464 0.1568 

MSD of intensity ratio IS/IM with respect to 
λ 0.00099 0.00080 0.00057 0.00068

Relative MSD of intensity ratio IS/IM with 
respect to λ (%)  0.099 0.080 0.057 0.068 

 

6.2 Sensibility of extinction spectrum to variation of concentration 
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Online measurements of the spectra directly from the light source and those have transmitted 

through the absorbing medium permits us reduce the potential error caused by the instabilities of 

the light source. And the light source is stable so that the fluctuation of the spectrum is found 

small enough to be ignored. On such a basis, we further explore the sensibility of the SLEM 

system to the variation of the particle concentration of absorbing medium, which can be the 

water and milk emulsion or the polystyrene particle suspension.  

6.2.1 Measurement of spectrum variation of water and milk emulsion 

We design and carry out the extinction measurement of the water and milk emulsion. The milk 

used in the measurement is half degreased. It is a colloidal medium containing a number of 

protein macromolecules. They can be considered as irregular particles of sizes from about 1.0 

nm to 1.0 µm. By adding the milk into the water, we can manually control and change the 

transmittance ratio very precisely of the light through the medium. 

6.2.1.1 Measurement conditions 

Measurement conditions used in our measurements are listed in  Table 6.3. The optical setup can 

be found in  Fig. 6.8.  

Table 6.3 Conditions for the water and milk measurements. 

Light source Type HL 2000 

Spectrometer Type SD 2000 

Integration time (TI, ms) 20 

Sampling number (Sn) 5 

Boxcar of wavelength (Bw) 2 

Number of spectra (Ns) 100 

Range of wavelength (µm) 0.35-0.95 

Time interval of acquisition (∆T, µs) 10 
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A beaker of the labeled volume 300 ml is filled with water mixed with the milk. Such a mixture 

is adjusted to have an initial extinction ratio I/I0 of ~50% in the SLEM system. By adding 1.5 ml 

water into the beaker, each time we can obtain a change of extinction ratio of ~0.5%. The 

measurements have been done by using the light source HL 2000. The integration time TI is set 

as 20 ms, the sampling number Sn is set as 5 and the boxcar of wavelength Bw is set as 10. For 

each concentration, three series of measurements have been made and each series contains 100 

spectra (Ns=100). Before the measurements, the water and milk emulsion are sufficiently 

agitated to obtain a sufficient mixture. 

 

Fig. 6.8 Optical setup for the water and milk emulsion measurement. 

6.2.1.2 Transmission and extinction spectrum 

The transmittance and extinction spectra versus the wavelength at the beginning of the 

measurement are shown in  Fig. 6.9.  
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(a) Transmission spectrum                                                           (b) Extinction spectrum. 

Fig. 6.9 Transmittance and extinction spectra of water and milk emulsion. 

In order to know the fluctuation of the transmittance and extinction spectra versus the 

wavelength, the MSD of intensity with respect to the wavelength is calculated for each series of 

measurement. As indicated by  Fig. 6.10, such an evaluation has been made for 100 spectra 

within the wavelength range [0.45, 0.90] µm.  

Obviously, the relative MSDs of incident and transmitted intensities with respect to the 

wavelength are very small, being 0.08% (0.395/487.5) for channel Master and 0.15% 

(0.389/264.3) for channel Slave, corresponding to the relative MSD of the transmission 

spectrum 0.12% (0.000635/0.542). For particles of size 0.1≤D≤5.0 µm, such a deviation 

corresponds to the random error level less than ~0.04%, which is too small to bring in any 

influence on the inversed results of PSD and volume concentration. Thus the current system can 

be considered stable enough for measurement.  
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Fig. 6.10 SD with respective to the wavelength (the red and blue curves represent the SDs of IM and IS, respectively). 

6.2.1.3 Results 

The mean incident intensities and the mean transmitted intensities for each wavelength have 

been calculated from a series of 100 measured spectra. The mean transmitted intensities meas.T  

versus the concentration are given in  Table 6.4. The theoretical transmittance ratio versus the 

quantity of the water added is calculated by using the Beer-Lambert’s law, which can be written 

as function of the volume concentration. According to the Beer-Lambert’s law, the 

transmittance ratio depends on the volume ratio of protein molecules to the emulsion, vm/v0 

multiplied by a constant term a. Namely, 
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If we use T0 to denote the initial transmittance ratio of the water and milk emulsion, after adding 

a small volume of water ∆v, the transmittance ratio of the mixture becomes 
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The transmittance ratio calculated from this relationship is given in the sixth column of  Table 

6.4. It can be found that for the water and milk emulsion, the relative error of transmission T  is 

less than 0.04% and that of extinction E  is less than 0.06%. These results indicate that the 

transmission and extinction spectra are very sensible to the concentration change of milk 

molecules. A slight change of the mean transmission 0.5% is measurable by the current system. 

The comparison between the measured and calculated transmittance ratios is given in  Fig. 6.11. 

Table 6.4 Transmission and extinction ratios of the water and milk emulsion. 

∆v (ml) meas.,1T  meas.,2T  meas.,3T  
meanT calcul.T

Variation 

of 

measured 

T  (%) 

Relative 

error of 

meas.T  

(%) 

meas.E  

Variation 

of 

measured 

E  (%)  

Relative 

error of 

meas.E (%)

0 0.5370 0.53733 0.53751 0.53728 0.53728 Ref. Ref. 0.62124 Ref. Ref. 

1.5 0.53882 0.53906 0.53907 0.53898 0.53903 0.170 –0.009 0.61808 –0.511 0.015 

3 0.54053 0.54104 0.54097 0.54085 0.54077 0.357 0.015 0.61461 –1.078 –0.024

4.5 0.54226 0.54251 0.54284 0.54254 0.54249 0.526 0.009 0.61149 –1.593 –0.015

6 0.54389 0.54404 0.54413 0.54402 0.54421 0.674 –0.035 0.60877 –2.048 0.057 

7.5 0.54564 0.54555 0.54576 0.54565 0.54591 0.837 –0.048 0.60578 –2.552 0.079 

9 0.54748 0.54757 0.54768 0.54758 0.54760 1.030 –0.004 0.60225 –3.153 0.006 
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Fig. 6.11 Measurement results of the transmittance ratio of the water and milk emulsion. 

6.2.2 Measurement of concentration variation of standard polystyrene particles 

Our system is developed to measure the particle size distribution. Therefore the most 

straightforward way for validation is by the usage of standard particles. In this subsection, 

experimental examination of the sensibility of the SLEM system to the small concentration 

variation of the standard polystyrene particle suspensions is carried out. The optical setup is 

same as that for water and milk measurement system, except that the beaker is replaced by a 

sampling cell of the length L=40 mm. The standard polystyrene particles used for the test have 

the refractive index IIm̂ =1.590 at the wavelength λ=589 nm. The manufacturer of the standard 

polystyrene particles is Duck Scientific, Inc. They are dispersed by the pure mineral water of 

refractive index Im̂ =1.333 at common temperature and pressure.  

6.2.2.1 Measurement conditions 

The measurements have been carried out for two kinds of standard polystyrene particles, with 

labeled diameters 0.5 µm and 1.0 µm, respectively, and suspended in the distilled water in a 

sampling cell of dimension 10mm×40mm×40mm. Before measurement, we manually agitate 

the suspension carefully with a syringe in order to make the particles in the suspension dispersed 

sufficiently. 
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For each concentration, five series of spectra are measured. Each series of spectra contains 100 

spectra, from which we calculate the mean intensity for each wavelength. All the parameters 

used in the data acquisition are given in  Table 6.5. As to be stated later in Chapter 7, the 

optimized regularization technique (ORT) is found more effective in practical PSD inversion. 

Therefore it is used in this subsection to study the sensibility of the system to the variation of 

volume concentration of the particles. The parameters used for inversion are given in  Table 6.6.  

Table 6.5 Parameters for acquisition used in the polystyrene particle measurements. 

Labeled diameter (D, µm) 0.5 1.0 

Integration time (TI, ms) 20  20  

Boxcar of wavelength (Bw) 5 5 

Sample number (Sn) 5 5 

Number of spectra (Ns) 100 100 

Table 6.6 The parameters used for inversion in polystyrene particles measurements. 

Range of wavelength (µm) 0.40-0.95 

Number of wavelength 100 

Particle size range (µm) 0.1-5.0 

Number of size intervals  100 

Algorithm ORT (γ＝1.0E-4, n=98) 

6.2.2.2 Results 

In order to know the sensibility of the SLEM system to the variation of volume concentration of 

particles, we use 
0vC  to designate the initial volume concentration. After adding the water of 

volume ∆v into the beaker, the volume concentration Cv is 

 0v v
0 0 0 0

1 1
1 / 1 /

v vC C
v v v v v v v

= = =
+ ∆ + ∆ + ∆

, (6-11)
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where v0 is the initial volume of the suspension and v is the total volume of particles.  

The inversed results of the volume concentration of the polystyrene particles of the diameters 

D=0.5 µm and 1.0 µm are compiled in  Table 6.7 and  Table 6.8, respectively. The volume 

concentration Cv calculated by Eq.(6-11) is also given in these tables. Comparison of the 

theoretical and measured volume concentrations is presented in the  Fig. 6.12 and  Fig. 6.13.  

At the beginning, the quantity of the polystyrene particles dispersed in water is adjusted so that 

the transmittance ratio is ~50%. Then each time, a certain volume of water is added into the 

sampling cell to achieve a volume concentration change of ~0.5%.  

for the particles of diameters 0.5 µm and 1.0 µm, the initial diluted polystyrene particle 

suspensions in the beaker has the heights 30.0 mm and 28.0 mm, respectively, which 

corresponding to the volume 12 ml and 11.2 ml. The minimum graduation of the syringe used 

for water addition is 0.05 ml. The precision of the volume of water added into the sampling cell 

is estimated to be 0.025 ml, so that the error of the volume concentration is less than ~0.2%. 

From the relative errors listed in the last column of  Table 6.7- Table 6.8, we can evaluate that the 

present system permits to measure the variation of volume concentration of 0.5% with 

uncertainty less than ~0.4%. Additionally, the calculated SMDs for these standard particles are 

0.5275 µm and 1.0780 µm, with deviation errors being 5.5% and 7.8%, respectively. 

Table 6.7 Measured and predicted volume concentration v/v0 (×10-6) for the polystyrene particles of diameter 0.5 µm 

(v0=12 ml). 

v∆   
(ml) Meas. 1 Meas. 2 Meas. 3 Meas. 4 Meas. 5 vC  

0v v/C C∆
 (%) vC  

(calcul.) 

v v

v

C C
C
−

(%) 

0 12.353 12.348 12.329 12.338 12.344   12.342 0 (Ref.) 12.342 Ref. 

0.15 12.154 12.167 12.182 12.174 12.178 12.171 –1.392 12.190 –0.160

0.30 12.033 11.998 12.031 12.045 12.034 12.029 –2.547 12.041 –0.111

0.45 11.902 11.926 11.928 11.925 11.937 11.902 –3.392 11.896 0.231 

0.6 11.792 11.813 11.802 11.869 11.733 11.802 –4.379 11.755 0.402 
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Fig. 6.12 Calculated and measured volume concentration (0.5 µm). 

 

Table 6.8 Measured and predicted volume concentration v/v0 (×10-6) for the polystyrene particles of diameter 1.0 µm 

(v0=11.2 ml). 

v∆   
(ml) Meas. 1 Meas. 2 Meas. 3 Meas. 4 Meas. 5 vC  

0v v/C C∆  
(%) vC  

(calcul.)

v v

v

C C
C
−  

(%) 

0.00 5.315 5.317 5.336 5.332 5.357   5.331 0 (Ref.) 5.331 Ref. 

0.15 5.250 5.2575 5.296 5.283 5.283 5.274 –1.083 5.261 0.242 

0.30 5.180 5.182 5.184 5.200 5.191 5.180 –2.700 5.192 –0.093

0.45 5.134 5.130 5.150 5.146 5.135 5.139 –3.612 5.126 0.260 

0.60 5.070 5.047 5.057 5.067 5.055 5.059 –5.104 5.060 0.020 
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Fig. 6.13 Calculated and measured volume concentration (1.0 µm). 

6.3 Size and concentration measurement of standard polystyrene particles 

To explore the applicability of the developed optical system and evaluate the measurement error, 

we apply the spectral light extinction method to measure the size and concentration of the 

standard polystyrene particles in this section. The standard polystyrene particles of labeled 

diameters 0.3, 0.5, 1.0, and 3.0 µm are measured.  

6.3.1 Experimental setup 

 

Fig. 6.14 Schematic diagram of the optical setup. 

The schematic diagram of the optical setup is illustrated in  Fig. 6.14. A multimodal fiber (Fiber 

 D1 

Diaphragm 
Fiber 1 

Lens

D3 

Z L f 

Sampling Cell 

Fiber 2 (D2) 
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1) is used as the launching fiber, with one of its end connected to the light source and the other 

one fixed at the focal point of the lens so that the incident light wave is collimated to the 

diameter of ~8 mm (D1=8 mm). When the light traverses the sampling cell, it is partly scattered 

and absorbed by the particles suspended in the sampling cell. A diaphragm is put close enough 

at the back of the sampling cell. It is utilized to prevent the scattered intensities by the particles 

at the edge zones from reaching the detecting fiber (Fiber 2). In our experiments, the diaphragm 

is adjusted to the opening diameter of 2.0 mm (D3=2.0 mm). The diameter of the Fiber 2 is quite 

small (D2=0.4 mm) and it is located 150 mm away from the sampling cell (L=150 mm), leading 

to the half collection angle of the receiver being ~0.08˚. In addition, the transparent sampling 

cell has the dimension of 40mm×40mm×10mm so that the length of the measurement zone is 40 

mm (Z=40 mm). As to be verified in Chapter 8, for such an optical configuration the scattered 

intensities reaching the detecting fiber is small enough to be neglected for single and multiple 

scattering regimes (ξ≤10) even when the diaphragm is removed. Therefore all the intensities 

detected by Fiber 2 can be looked on as the contribution of the transmitted light.  

The measurement is performed by the software TURACE 5.0 developed by us for the SLEM 

system, which has a friendly interface for easy operation. In TURACE 5.0, the data acquisition 

mode is alternative: single channel or double channel. In the current experiments, double 

channel mode is chosen so that the original intensity I0 and transmitted intensities I can be 

obtained simultaneously. Such a mode is also adopted for online wet steam measurement.  

6.3.2 Measurements 

The halogen lamp HL 2000 is used as the light source. There are 2048 wavelengths ranging 

from 0.3400 µm to 1.0255 µm detected by the spectrometer. The intensities corresponding to the 

wavelengths within [0.4, 0.95] µm are found strong enough. Two hundred of them are selected 

out and each of them is calculated from the mean value of the intensities corresponding to 10 

adjacent wavelengths (Bw=10). All the parameters used for data acquisition and inversion are 

listed in  Table 6.9. 
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Table 6.9 The parameters used for acquisition and inversion.  

Integration time (TI, ms) 100 

Boxcar of wavelength (Bw) 10 

Sample number (Sn) 5 

Number of spectra (Ns) 100 

Range of wavelength (µm) 0.40-0.95 

Number of wavelength (Nw) 200 

Particle size range (µm) 0.1-5.0 

Number of size intervals (NI) 100 

Algorithm ORT (γ＝1.0E–4, n=98) 

6.3.2.1 Unimodal distribution 

First, we perform the measurement for each particle diameter. The inversed results of SMD D32 

and volume concentration Cv are listed in  Table 6.10.  In  Fig. 6.15- Fig. 6.18 are plotted the 

inversed PSD and the comparison of the reconstructed spectrum with the original one.  

Table 6.10 Inversed Sauter diameter (D32) and volume concentration (Cv) of the standard polystyrene particles. 

 PSD 1 PSD 2 PSD 3 PSD 4 

D32 given (µm) 0.3 0.5 1.0 3.0 

Twomey 0.066 0.415 1.086 2.934 D32 inversed 
(µm) ORT 0.319 0.526 1.082 3.011 

Twomey –78.0 –17.0 8.6 –2.2 
Error of D32 (%) 

ORT 6.4 5.2 8.2 0.37 

Twomey 2.863E–5 3.503E–5 4.827E–6 2.910E–6 
vC  inversed 

ORT 6.435E–6 2.627E–5 4.740E–6 3.066E–6 
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As can be found from  Table 6.10, ORT’s inversed results of SMD are close to the labeled values 

of the standard particles, with deviations less than 10%. The Twomey algorithm, however, leads 

to more obvious deviations. Especially for the standard particle of D=0.3 µm, the inversed result 

of SMD is 0.066 µm, with the error being –78.0%. Moreover, the PSD obtained by the Twomey 

algorithm presents a gradually decreasing shape for 0≤D≤0.5 µm, which is evidently 

unbelievable.  

Comparison of the two algorithms indicates that the ORT has a better performance in practical 

particle sizing than the Twomey algorithm does, though the reconstructed spectra from 

Twomey’s PSDs might agree better with the measured ones than the ORT’s results do, which 

can be found in  Fig. 6.15b- Fig. 6.17b.  
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(a)                                                                                                 (b)  

Fig. 6.15 Inverse results of PSD (D=0.3 µm) and comparison of the original and reconstructed spectra. (a) Inversed 

PSD; (b) Comparison of the original and reconstructed spectra. 
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(a)                                                                                               (b)  

Fig. 6.16 Inverse results of PSD (D=0.5 µm) and comparison of the original and reconstructed spectra. (a) Inversed 

PSD; (b) Comparison of the original and reconstructed spectra. 
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(a)                                                                                                  (b)  

Fig. 6.17 Inverse results of PSD (D=1.0 µm) and comparison of the original and reconstructed spectra. (a) Inversed 

PSD; (b) Comparison of the original and reconstructed spectra. 
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(a)                                                                                                   (b) 

Fig. 6.18 Inverse results of PSD (D=3.0 µm) and comparison of the original and reconstructed spectra. (a) Inversed 

PSD; (b) Comparison of the original and reconstructed spectra. 

6.3.2.2      Bimodal and multimodal distribution 

In this subsection we discuss the measurement of the mixture of particles of different diameters. 

Two or three of the standard polystyrene particles of diameters D=0.5, 1.0, and 3.0 µm are 

selected and mixed together to produce a bimodal or multimodal PSD. 

In  Fig. 6.19 is plotted the inversed PSD and the reconstructed spectrum of the mixture of PSD2 

and PSD3. The observed peaks existing with the ORT’s results locate at D=0.54 and 1.08 µm, 

corresponding to the deviations of ~8.0% and ~8.0%, respectively, from the labeled mean 

diameters of PSD2 and PSD3. As to the results of the Twomey algorithm, the two main peaks 

locate at 0.55 µm and 1.15 µm, corresponding to the deviations of ~10.0% and ~15.0%, 

respectively, from the labeled values.  

In  Fig. 6.20 is plotted the inversed PSD result and reconstructed spectrum of the mixture of 

PSD2 and PSD4. The observed peaks existing with the ORT’s results locate at D=0.56 and 3.11 

µm, corresponding to the deviations of about 12.0% and 3.7%, respectively, from the labeled 

values. As to the results of the Twomey algorithm, the two main peaks locate at D=0.35 and 

3.17 µm, corresponding to the deviations of about ~30.0% and ~5.7%, respectively, from the 

labeled values. In addition, there exists a split distribution at the vicinity of D=4.8 µm. 
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In  Fig. 6.21 is plotted the inversed PSD result and reconstructed spectrum of the mixture of 

PSD3 and PSD4. The observed peaks existing with the ORT’s results locate at D=1.18 and 3.17 

µm, corresponding to the deviations of ~18.0% and ~5.7%, respectively, from the labeled values. 

As to the results of the Twomey algorithm, the two main peaks are at 1.13 and 3.25 µm, 

corresponding to the deviations of ~13.0% and ~8.33%, respectively, from the labeled values. In 

addition, a split distribution is still found at the vicinity of D=4.8 µm.  

In  Fig. 6.22 is plotted the inversed PSD result and reconstructed spectrum of the mixture of 

PSD2, PSD3, and PSD4. The observed three main peaks existing with the ORT’s PSD results 

locate at D=0.58, 1.08, and 3.14 µm, corresponding to the deviations of ~8.0%, ~8.0%, and 

~4.7%, respectively, from the labeled values. However, the Twomey algorithm merges the first 

two peaks of PSD2 and PSD3 so that only two main peaks can be recognized at the vicinities of 

D=0.68 and 3.12 µm. 

From these measurements, we are persuaded again that in most cases, the ORT is more 

sophisticated than the Twomey algorithm in the practical bimodal or even multimodal PSD 

inversion, though both algorithms lead to a perfect agreement of the reconstructed and the 

original spectra. 

To make the measurement system more approximate to that designed for wet steam 

measurement, after each measurement the diaphragm is removed and the spectrum is recorded 

again. However, little difference has been found between the spectrum measured with and 

without the diaphragm. This means that for the current SLEM system, the scattering intensities 

from the particles at the edge zones, which is characterized by D2/2≤D≤D1/2 (see  Fig. 6.14), 

have no essential influence on the extinction spectrum. The reason will the explored in the next 

chapter. 
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(a) Inversed PSD                                           (b) Comparison of the original and reconstructed spectra 

Fig. 6.19 Inversed PSD of the mixture of PSD2 and PSD3 and comparison of the original and reconstructed spectra. 

The inversed SMDs by using the Twomey algorithm and the ORT are 0.729 µm and 0.826 µm, respectively.  
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(a) Inversed PSD                                          (b) Comparison of the original and reconstructed spectra 

Fig. 6.20 Inversed result of mixture of PSD2 and PSD4 and comparison of the original and reconstructed spectra. 

The inversed SMDs by using the Twomey algorithm and the ORT are 0.846 µm and 1.476 µm, respectively.  
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(a) Inversed PSD                                         (b) Comparison of the original and reconstructed spectra 

Fig. 6.21 Inversed PSD of the mixture of PSD 3 and PSD 4 and comparison of the original and reconstructed spectra. 

The SMDs by using the Twomey algorithm and the ORT are 2.536 µm and 2.243 µm, respectively. 
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(a) Inversed PSD.                                           (b) Comparison of the original and reconstructed spectra 

Fig. 6.22 Inversed PSD of the mixture of PSD 2, PSD 3, and PSD 4 and comparison of the original and reconstructed 

spectra. The inversed SMDs by using the Twomey algorithm and the ORT are 0.835 µm and 0.955 µm, respectively.  

6.4 Conclusion 

To characterize the stability of the light source, the MSD of the average intensity and the MSD 

of intensity with respect to the wavelength are examined experimentally. These SDs show some 

dependence on the acquisition parameters. The relative MSD of the average intensity ratio is 
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found less than 0.06% and 0.028% for light sources HL 2000 and DH 2000, respectively, when 

the integration time is less than 20 ms (TI≤20 ms), the sampling number Sn is 5 (Sn=5), the 

boxcar of wavelength is 2 (Bw=2), and the number of spectra is 100 (Ns=100). The relative MSD 

of the intensity ratio with respect to the wavelength is less than 0.21% and 0.1% for the light 

sources HL 2000 and DH 2000, respectively. The fluctuation of spectra with such a SD has little 

influence on the measurement results.  

On such a basis, we further study the sensibility of the SLEM system to the small change of the 

transmission spectrum. Using the water and milk emulsion, we have shown experimentally that 

a small variation of the mean transmission of 0.5% is measurable by the current system. Using 

the standard polystyrene particles of diameters 0.5 and 1.0 µm, we find the small change of 

particle volume concentration of 0.5% is measurable. Then experimental application of SLEM 

in standard polystyrene particle is carried out in this chapter. The ORT is found more effective 

than the Twomey algorithm in practical experimental data inversion. The errors of the measured 

SMDs of the standard polystyrene particles are found less than ~10%. These experiments lead to 

the conclusion that although the absolute measurement of D32 is not highly accurate (with errors 

less than 10%), the measurement of volume concentration variation ∆Cv (relative measurement) 

by the current system is high enough, with errors less than ~0.4% for ∆Cv=0.5%. 
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Chapter 7. Wet Steam Measurement 

The measurement of standard polystyrene particles in the preceding chapter assures us that the 

current system designed on the basis of spectral light extinction method (SLEM) has the 

measurement errors less than ~10% when optimized regularization technique (ORT) is chosen 

for data inversion. In this chapter, we further apply the same system in online wet steam 

measurement, including droplet size distribution and wetness measurement. Before carrying out 

the measurement, we give the relation between the wetness and the particle concentration.  

7.1 Wetness 

The measured wetness of the two-phase flow, denoted by the sign YM, is obtained from the 

volume concentration of the droplets contained in the flow, vC , the density of the vapor phase of 

the water, gρ , and the density of the liquid phase of water, fρ , as follows: 

 v
M

v v(1 )
f f

f g f g

m C
Y

m m C C
ρ

ρ ρ
= =

+ + −
, (7-1)

where fm  and gm are the mass of the liquid and vapor phase of water, respectively. And fρ  and 

gρ are the liquid and vapor phase densities, respectively. Since the volume of droplets contained 

in the flow occupies a very small proportion, namely vC <<1, Eq.(7-1) can be simplified to the 

following form:  

 v
M

v

f

f g r

m CY
m m C ρ

= =
+ +

, (7-2)

where the expression of the density ratio of the two phases of the water, rρ , is calculated by 

 /r g fρ ρ ρ= . (7-3)

The density of vapor and liquid phased are decided by the pressure of the saturated steam at the 

measurement point from the saturated steam chart.  
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7.2 Experimental setup 

In this subsection, we apply the SLEM system, which described is in Section 6.3 of Chapter 6, 

in the measurement of the wet steam generated by an experimental turbine installed on platform 

PAT (Plate-forme Aérodynamique et Thermodynamique) in EDF (Dorey et al., 2006). The 

scheme of the facility and the photo for realistic measurements are shown in  Fig. 7.1 and  Fig. 

7.2. The overheated steam is cooled by water spraying and then conducted to a turbine. Such a 

turbine system is designed to produce the wet steam with a very good stability and a very fine 

adjustment of turbine inlet temperature and pressure so that the concentration of droplets 

corresponds to the wetness that prevails at the exit of low pressure cylinder.  

 

Fig. 7.1 Scheme of installation plat-form. 

Steam boiler 

Cooling water 
30 bar 90°C 

Alternator 

Turbine

Compressor 

muffler 

Wet steam 

Air

By-pass Launching fiber

MICROTA

Detecting fiber

SLEM measurement 
section 

Separator 



 Chapter 7. Wet steam measurement 

 180

 

(a) Turbine system 

 

(b) SLEM measurement system installed on the turbine 

Fig. 7.2 Realistic photos of the turbine system and the optical measurement system installed on the plat-form PAT. 
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7.3 Measurements 

The measurement of the wetness and the size distribution has been done in a series of conditions 

of inlet temperature with a step of ~0.5°C. We show hereafter an example of such a 

measurement. The upstream and downstream pressures are 1.034 bar and 0.552 bar, respectively. 

The turbine inlet temperature at downstream is varied from 127.5°C to 130°C. The rotational 

speed of the turbine is 38 750 tr/min.  

By using the parameters listed in  Table 7.1 for data acquisition and inversion, the inversed result 

of volume frequency distribution of the droplets, which is calculated from a spectrum averaged 

from one series of 100 continuously spectra, are plotted in  Fig. 7.3a, from which we found that 

the PSD is quasi monodisperse. A small part of volume is found occupied by the particles of 

diameters ~2.7 µm. However, their absolute number is not remarkable, as indicated by the 

number frequency distribution in  Fig. 7.3b. The reconstructed spectrum is compared with the 

measured one in  Fig. 7.4, leading to a perfect agreement.  

Table 7.1 The parameters used for acquisition and inversion.  

Integration time (TI, ms) 100 

Boxcar of wavelength (Bw) 10 

Sample number (Sn) 5 

Number of spectra (Ns) 100 

Range of wavelength (µm) 0.40-0.95 

Number of wavelength (Nw) 200 

Particle size range (µm) 0.1-5.0 

Number of size intervals (NI) 100 

Algorithm ORT (γ＝1.0E–4, n=98) 

Since the measurement is online, the SLEM system permits to obtain rapid temporal evolution 

of SMD of the droplets and wetness, as indicated in  Fig. 7.5 and  Fig. 7.6. They 



 Chapter 7. Wet steam measurement 

 182

correspond to a series of 100 spectra acquired within 10 seconds. We can find from  Fig. 7.5 that 

in such a time period, the Sauter mean diameter D32 varies within the range [0.6, 0.9] µm and 

the wetness varies within [0.59%, 0.68%]. It is interesting to find that from 2.0s to 2.5s, there 

appears a jump of SMD of about 0.05 µm. The reason for such a phenomenon remains to be 

examined. 
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(a) Volume frequency distribution                                            (b) Number frequency distribution 

Fig. 7.3 Volume and number frequency PSD of the droplets in wet steam.  
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Fig. 7.4 Comparison of the reconstructed spectrum to the measured one, which is averaged from 100 continuously 

acquired spectra. 
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Fig. 7.5 Temporal evolution of the Sauter mean diameter D32. 
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Fig. 7.6 Temporal evolution of the measured steam wetness YM. 

The measured wetness, YM, can be compared with the theoretically predicted one, YT, which is 

inferred from the inlet conditions and the efficiency of the turbine (previously measured without 

cooling) at a certain measurement section. The calculation is formulized in IAPWS (1997).  Fig. 

7.7 gives a comparison of the theoretical and measured wetness (Dorey et al., 2006). The 

measured wetness shown here is the mean value calculated from the 100 measured spectra and 

the theoretical wetness are predicted according to the pressures and the temperatures at the 

upstream and the downstream, and the gain of the turbine. The discrete data are fitted by a linear 

regression line. We find that the deviation of the measured wetness from the theoretical one is 

within [1.6%, 4.5%] for 0.6%<YT<0.8%. Wetness measurements are also carried out for other 
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pressure and temperature conditions. The results are shown in  Fig. 7.8- Fig. 7.11 (Dorey et al., 

2006).  

Remarkable difference between the theoretically calculated and measured wetness can be found 

in  Fig. 7.8 and  Fig. 7.10, corresponding to the deviations of the measured wetness from the 

theoretical one being within [7%, 90%], [22%, 28%], and [23%, 33%], respectively. This might 

be due to the fact that low theoretical wetness is influenced a lot by the turbine efficiency 

experimentally determined. In other words, small measurement errors of turbine efficiency bring 

in remarkable variations of the theoretically predicted wetness.  
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Fig. 7.7 Comparison of the theoretical and measured wetness of the wet steam. The upstream and downstream 

pressures are 1.03 bar and 0.55 bar, respectively. The turbine inlet temperature at downstream is varied from 

127.5°C to 130°C. The length of the measurement zone is 86 mm (Z=86 mm). The deviation of the measured 

wetness from the theoretical one is within [1.6%, 4.5%]. 
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Fig. 7.8 Comparison of the theoretical and measured wetness of the wet steam. The upstream and downstream 

pressures are 1.28 bar and 0.67 bar, respectively. The turbine inlet temperature at downstream is varied from 135°C 

to 140°C. The length of the measurement zone is 71 mm (Z=71 mm). The deviation of the measured wetness from 

the theoretical one is within [7%, 90%].  
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Fig. 7.9 Comparison of the theoretical and measured wetness of the wet steam. The upstream and downstream 

pressures are 1.28 bar and 0.67 bar, respectively. The turbine inlet temperature at downstream is varied from 130°C 

to 134°C. The length of the measurement zone is 71 mm (Z=71 mm). The deviation of the measured wetness from 

the theoretical one is within [22%, 28%]. 
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Fig. 7.10 Comparison of the theoretical and measured wetness of the wet steam. The upstream and downstream 

pressures are 1.28 bar and 0.67 bar, respectively. The turbine inlet temperature at downstream is varied from 126°C 

to 129°C. The length of the measurement zone is 71 mm (Z=71 mm). The deviation of the measured wetness from 

the theoretical one is within [23%, 33%]. 
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Fig. 7.11 Comparison of the theoretical and measured wetness of the wet steam. The upstream and downstream 

pressures are 1.03 bar and 0.55 bar, respectively. The turbine inlet temperature at downstream is varied from 

127.5°C to 130.5°C. The length of the measurement zone is 86 mm (Z=86 mm). The deviation of the measured 

wetness from the theoretical one is within [4%, 7%].  
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7.4 Conclusion 

The current system can be successfully applied in online wet steam measurement. Temporal 

evolution of SMD D32 and wet steam wetness YM is obtained. It provides an effective index for 

the water erosion diagnosis and the turbine efficiency studies. For the working condition of 

upstream and downstream pressures are 1.03 bar and 0.55 bar, respectively, the deviation of the 

measured wetness from the theoretical one is within [1.6%, 4.5%] for 0.6%<YT<0.8% when the 

turbine inlet temperature at downstream is varied from 127.5°C to 130°C. However, the 

deviation increases for other working conditions, which might be caused by the measurement 

errors of turbine efficiency. 
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Chapter 8. Particle Sizing in High Concentration 

In the preceding chapters, the theoretical and experimental studies on spectral light extinction 

method (SLEM) have been carried out, including algorithm verification, sensibility test, 

standard polystyrene particle and wet steam measurement. Nevertheless, we have assumed that 

the light intensity detected by the receiving fiber is simply the contribution of the transmitted 

light. In practice, the fiber possesses a finite size, which forms a solid angle to collect the 

scattered intensities. We might get curious about their contribution to the final detected signals 

especially when the numerical aperture of the fiber is great and the opening diameter of the 

diaphragm (D3) is larger than that of the detector (D2), since in this case there exists a large edge 

zone characterized by D2/2≤D≤D3/2 (see  Fig. 8.1) and the scattered intensities by more particles 

are collected by the detector. Moreover, in the situation of high concentration multiple scattering 

happens, which must be considered carefully in experiments. In this chapter, the influences of 

all these factors on the extinction spectrum are studied by numerical simulation based on Monte 

Carlo method.  

8.1 Monte Carlo method 

The central idea of the Monte Carlo method is the simulation of the light scattering phenomenon 

by using density probabilities. We assume a light beam incident on the particle system 

containing N particles, whose optical thickness ξ=NQextZ, where Qext is the extinction efficiency 

factor of a single spherical particle of diameter d.  In Monte Carlo method, the light is 

discretized into a number of “photons”, which are scattered or absorbed when interacting with 

the particles. The path length of a photon between two successive interactions, denoted by l, can 

be described by a random number q1 ranging in [0, 1] through the following equation: 

 1 extln /l q Q= − . (8-1)

To decide whether the photon is absorbed by the particle during the interaction, another random 

number q2 is introduced and compared to the albedo factor a defined by the ratio of the 

scattering efficiency and the extinction efficiency as follows: 

 sca ext/a Q Q= . (8-2)
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For q2≥a, the photon is absorbed, otherwise it is scattered.  The new direction of a scattered 

photon can be determined by the phase function, which accounts for the probability of scattering 

in a given direction characterized by the scattering angle θ. In the present study, the following 

Henyey-Greenstein phase function PHG, which is discussed by van de Hulst (1957) is employed 

to take such a role: 

 
2

HG 2 3/ 2

(1 )(cos )
(1 2 cos )

a gP
g g

θ
θ

−
=

+ −
, (8-3)

where the asymmetry parameter g is defined as the cosine-weighted average of the phase 

function. For a spherical particle of dimensionless size parameter α and Mie coefficients na  and 

nb , the analytical expression of asymmetry parameter g can be calculated by 
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On the basis of these basic parameters, two-dimension and three-dimension Monte Carlo 

method for particle sizing simulation by using light extinction method has been developed by 

Briton et al. (1992), Bruscaglioni et al. (1987), Su et al. (2004), etc. When enough photons are 

adopted, the results agree well with the experimental results of the extinction method 

(Bruscaglioni et al., 1987). The code employed for our simulation is developed by Briton et al. 

(1992) and Su et al. (2004). For the realistic measurement system of SLEM schemed in  Fig. 8.1, 

the surviving photons escaping from the measurement zone at a certain angle after experiencing 

numerous interactions with the particles are counted. Their acceptance by the detector depends 

on the geometry of the detecting system, including the distance from the diaphragm to the 

detecting fiber L, the length of measurement zone Z, the diameter of detector D2, etc. Together 

with the diameter of the incident beam D1, these parameters determine the scattering behavior of 

the particles suspending or passing through the measurement zone.  

8.2 Numerical studies 

8.2.1 Evaluation of multiple scattering 

The measurement system in current studies is shown in  Fig. 8.1. In such a system, a 
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collimated beam of diameter D1 traverses the measurement zone of length Z, in which are 

suspended the particles to be measured. L is the distance from the detecting fiber to the right 

side of the measurement zone. D3 is the opening diameter of the diaphragm. Without loss of 

generality for all kinds of detectors, the numerical aperture of the detecting fiber in simulation is 

assumed to be 1.0 so that all the light intensities reaching the fiber can be detected.  

 

Fig. 8.1 Schematic diagram of the measurement system for Monte Carlo simulation. 

8.2.2 Influence of scattering from particles in edge zone 

The Monte Carlo method has the advantage of being able to simulate the realistic measurement 

situation. Our numerical simulation is based on the system described in the preceding subsection. 

The beam is collimated to the diameter of ~8 mm (D1=8 mm). The receiving fiber has the 

diameter of 0.4 mm (D2=0.4 mm). Since in practical wet steam measurement, the diaphragm is 

removed for the convenience of optical system construction and optical alignment, its opening 

diameter can be looked on as infinite (D3→∞) for numerical simulation in this case. On the 

basis of these parameters, we aim to find out an optimized distance from the measurement zone 

to the fiber, L, which makes the influence of intensities scattered by the particles in the edge 

zones negligible.  

Since the diameter of the transmitted light bundle D1 (D1=8 mm) is larger than that of the 

detecting fiber D2 (D2=0.4 mm), theoretically there exists a part of scattered intensities received 
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by the detecting fiber, especially when D3>>D2, as indicated by  Fig. 8.2. To evaluate their 

influence on the extinction spectrum, numerical simulations are firstly made for single scattering 

regime, which is characterized by the optical thickness less than 1.0 (ξ<1.0). The number of 

photons used for simulation is 4,000,000. And 23 equidistant wavelengths within the 

wavelength range [0.40, 0.95] µm are used for the extinction spectrum calculation (Nw =23), 

with the step length being 0.25 µm (∆λ=0.25 µm). 

 

Fig. 8.2 Scattered intensities detected by the fiber. 

Some basic conceptions should be clarified before numerical simulation. In Monte Carlo 

method, the transmitted intensities detected by the fiber are composed of parts: the directly 

transmitted intensities (Itrans.) which are not affected by the multiple scattering and the diffracted 

intensities (∆Idiff.) which are affected by the multiple scattering, namely: 

 trans. diff.I I I= + ∆ . (8-5)

Divided by the incidence intensities I0, the extinction ratio EM in Monte Carlo model can be 

written in the following form: 

 trans. diff.
M
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ln ln I IIE
I I

⎛ ⎞ ⎛ ⎞+ ∆
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (8-6)

x 

D1 

D2 

Detector 

∆Ω1 

∆θ1 
 

z 

D3 

Diaphragm 

y 

∆θ2 
 

Detector 

L1 

L2 

∆Ω2 



 Chapter 8. Particle Sizing in High Concentration 

 192

However, the ideal extinction ratio is defined on the assumption that all the scattered intensities 

are excluded, namely ∆Idiff.→0. Therefore in such an ideal model, the extinction ratio is defined 

by the ratio of the purely transmitted intensities Itrans. and the incidence intensities I0, namely 

 trans.
I

0 0

ln ln IIE
I I

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (8-7)

Moreover, the contribution of the scattered intensities by the particles in the edge zone, which is 

characterized by D2/2≤D≤D3/2, is neglected by the ideal model. This part, however, can be 

considered by the Monte Carlo simulation.  

To characterize the deviation of extinction spectra calculated by the ideal model and the Monte 

Carlo model, the mean absolute deviation (δa, mean) of the extinction spectrum is defined as 

follows: 
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j j j
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E E E

N
δ

−
=
∑

, (8-8)

where Nw is the number of the wavelengths used in simulation. 

On the basis of these conceptions, we firstly simulate the case of polystyrene particles 

measurement. The numerical calculation is made for the measurement zone of the lengths Z=10, 

40, and 70 mm respectively, corresponding to the number concentrations (Cn) of the particles 

being 3.08E+13, 7.70E+12, and 4.40E+12/m3, respectively. For the monodisperse particles of 

diameter D=1.0 µm, the optical thicknesses ξ calculated by 

 2
ext( )

4 nC Z D Qπξ =  (8-9)

are same for all these three cases. For each length of the measurement zone, calculations are 

made for the distances from near to the measurement zone to far from it: L=5, 10, 25, 100, and 

500 mm, respectively. As illustrated in  Fig. 8.3- Fig. 8.5, the numerical results are compared to 

the extinction spectra obtained by the ideal model through direct superposition of the extinction 

ratios of all the single particles (namely “direct calculation”, which is discussed in Chapter 5).  
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Fig. 8.3 Extinction spectra of the polystyrene particles of the diameter D=1.0 µm and the number concentration 

Cn=3.08E+13/m3, and suspended in water. The length of the measurement zone is 10 mm (Z=10 mm). 
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Fig. 8.4 Extinction spectra of the polystyrene particles of the diameter D=1.0 µm and the number concentration 

Cn=7.70E+13/m3, and suspended in water. The length of the measurement zone is 40 mm (Z=40 mm). 
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Fig. 8.5 Extinction spectra of the polystyrene particles of the diameter D=1.0 µm and the number concentration 

Cn=4.40E+12/m3, and suspended in water. The length of the measurement zone is 70 mm (Z=70 mm). 

Table 8.1 The mean absolute deviations (δa, mean) for the polystyrene particles of the diameter D=1.0 µm. 

Particle Type D3 (mm) L (mm) Z (mm) δa, mean (%) 

Polystyrene Particles ∞ 25 40 2.03 

Polystyrene particles ∞ 100 40 0.56 

Polystyrene particles ∞ 150 40 0.46 

From these figures, we find that the more a detecting fiber is away from the measurement zone, 

the more the detected extinction ratios ln(I/I0) approach the ideal values ln(Itrans./I0). With the 

increase of distance from the measurement zone to the detecting fiber, the solid angle gradually 

decreases so that the scattered intensities become weaker till negligible (∆Idiff.→0).  

A more straightforward proof is the mean absolute deviations (δa, mean) of the extinction 

spectrum calculated for the distances L=25, 100, and 150 mm. The results illustrated in  Table 

8.1 indicate that for Z=40 mm, δa, mean decreases from 2.03% to 0.46% when L increases from 25 

mm to 150 mm. 

In addition, through the comparison of the extinction spectra of the same distance L in  Fig. 8.3-

 Fig. 8.5, we find that increasing the length of the measurement zone Z also reduces the influence 

of the scattered intensities. This is because for the same number of the particles (Same optical 
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thickness), the mean distance of the particles suspending in a measurement zone of long length 

(e.g., Cn=4.40E+12/m3 and Z=70 mm) is longer than that of the same particles in a measurement 

zone of short length (e.g., Cn=3.08E+13/m3, Z=10 mm), which generally brings in smaller solid 

angles for the detector to receive the scattered intensities.  

Another observed phenomenon is that the deviation of the extinction ratio predicted by the ideal 

model from the Monte Carlo method that predicted by is larger at the smaller wavelength, which 

means the influence of scattered intensities on the extinction ratio corresponding to the smaller 

wavelength is more remarkable. This is due to the fact that smaller wavelength brings in larger 

size parameter so that the diffracted intensities contained in diff.I∆  are stronger in the near 

forward direction of the particle. According to Eqs.(8-6) and (8-7), such a deviation can be 

evaluated by E∆  as follows: 

 trans. diff. trans. diff.

0 0 trans.

ln ln ln 1I I I IE
I I I

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ∆ ∆
∆ = − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (8-10)

For large particles the absolute diffracted intensities contained in diff.I∆  are larger than those for 

the small ones and the transmitted intensities trans.I  are smaller than those for the small ones. 

Therefore the deviation E∆  becomes larger.  

Next, we simulate the case of water droplets (contained in wet steam). For the given lengths of 

measurement zone Z=10, 40, and 70 mm, the number concentrations of water droplets of the 

diameter D=1.0 µm and the refractive index m̂ =1.333 are set as Cn=3.0E+13, 7.5E+12, and 

4.3E+12/m3, respectively, so that the total number of the particles and the optical thickness is 

constant. For each length of the measurement zone, the calculations are made for the distances 

L=5, 10, 25, 100, and 500 mm, respectively. As indicated by  Fig. 8.6- Fig. 8.8, similar 

phenomena as that for the case of polystyrene particles can be found: when the distance from 

measurement zone to the detector or the length of the measurement zone increases, the influence 

of the scattered intensities on the extinction spectrum decreases and the scattered intensities by 

the particles in the edge zone have more obvious influence on the extinction ratio which 

corresponds to the smaller wavelength. 

It is noteworthy that, for the measurement zone of length Z=70 mm, which is the 
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situation of realistic wet steam measurements, the influence of multiple scattering on the 

extinction is very little when the detecting fiber is 100 mm away from right side of the 

measurement zone (L=100 mm). As indicated by  Table 8.2, the mean deviation δa, mean is less 

than 0.5% for the droplets of the diameter D=1.0 µm. Such a level can also be achieved in 

realistic polystyrene particle measurements by using the distance L=150 mm for the 

measurement zone of length 40 mm, as indicated in  Table 8.1. According to our numerical 

simulation described in Chapter 5, such a deviation level brings in little influences on the 

inversed results. 
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Fig. 8.6 Extinction spectra of the water droplets of the diameter D=1.0 µm and the number concentration 

Cn=3.0E+13/m3. The length of the measurement zone is 10 mm (Z=10 mm). 
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Fig. 8.7 Extinction spectra of the water droplets of the diameter D=1.0 µm and the number concentration 

Cn=7.5E+12/m3. The length of the measurement zone is 40 mm (Z=40 mm). 
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Fig. 8.8 Extinction spectra of the water droplets of the diameter D=1.0 µm and the number concentration 

Cn=4.3E+12/m3. The length of the measurement zone is 70 mm (Z=70 mm).  

Table 8.2 The mean absolute deviations (δa, mean) for water droplet of the diameter D=1.0 µm. 

Water droplets D3 (mm) L (mm) Z (mm) δa, mean (%) 

Water droplets ∞ 25 70 0.94 

Water droplets ∞ 50 70 0.60 

Water droplets ∞ 100 70 0.45 

Persuaded by numerous simulations made for the particles of other diameters within [0.1, 5.0] 

µm, we recommend that for the current SLEM system the optimum distance L should be larger 

than 150 mm and 100 mm, respectively, for the lengths of measurement zone being 40 mm and 

70 mm, which are adopted in realistic polystyrene particle and wet steam measurement, 

respectively (diaphragm is not used). Such a distance ensures the mean deviation of the spectra 

obtained by the ideal model (direct calculation used) from the realistic model (Monte Carlo 

method used) less than 0.5%, which leads to a negligible influence on the inversed results. In 

other words, the influence of scattering from particles in the edge zone can be neglected at these 

optimum distances. 

8.2.3 Influence of multiple scattering 

We have demonstrated that for the current measurement system the scattered intensities from 
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the particles at the edge zone have little influences on the extinction spectra once the distance 

from the measurement zone to the detector is large enough. However, only single scattering 

regime is concerned in the preceding subsection. In this subsection, we further explore the 

influence of multiple scattering on the extinction spectrum. The proposed distances L=150 mm 

and 100 mm are used for the realistic polystyrene particles measurement system (Z=40 mm) and 

the wet steam measurement system (Z=70 mm). Through increasing the number concentration 

Cn, the influence of multiple scattering on the extinction spectrum is evaluated.  

In numerical simulations, the diameters of the polystyrene particles are assumed to be 0.5 µm, 

1.0 µm, and 3.0 µm respectively. As indicated by the numerical results illustrated in  Fig. 8.9, 

when the maximum optical thickness of the polystyrene particles increases from less than 1.0 

(ξmax<1.0) to larger than 8.0 (ξmax>8.0), excellent agreements are found between the extinction 

spectrum calculated from the ideal model and those predicted by Monte Carlo method. As listed 

in  Table 8.3, the mean absolute deviation of spectrum of the ideal model keeps being less than 

0.8% for all the number concentrations and diameters. Such a deviation level is found for all the 

polystyrene particles of the diameters within [0.1, 5.0] µm. It is found to bring in little influence 

on the inversed results and hence negligible. 
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   (c) 

Fig. 8.9 Extinction spectrum of the polystyrene particles suspended in water. The distance from the measurement 

zone to the detector L is 150 mm. The length of measurement zone is Z=40 mm, which is the realistic situation of 

the standard particle measurement. (a) D=1.0 µm and Cn increases from 7.70E+12 to 6.93E+13/m3; (b) D=0.5 µm 

and Cn increases from 7.00E+13 to 2.25E+14/m3; c) D=3.0 µm and Cn increases from 1.00E+12 to 9.00E+12/m3. 

Table 8.3 Mean absolute deviation of spectrum of the ideal model for polystyrene particle measurement in the 

situation of high concentration (Z=40 mm and L=150 mm) 

D (µm) Cn δa, mean (%) 

0.5 7.00E+13 0.78 

0.5 2.10E+14 0.39 

0.5 4.20E+14 0.33 

0.5 6.30E+14 0.54 

1.0 9.25E+12 0.46 

1.0 2.78E+13 0.35 

1.0 5.55E+13 0.39 

1.0 8.33E+13 0.37 

3.0 1.00E+12 0.58 

3.0 3.00E+12 0.31 

3.0 6.00E+12 0.46 

3.0 9.00E+12 0.48 
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Similar studies have also been done for the water droplets of diameters D=0.5, 1.0, and 3.0 µm, 

respectively. As indicated by  Fig. 8.10, the results of the ideal model also agree well with those 

predicted by Monte Carlo method for all concentrations corresponding to 0<ξ<9.0. And we find 

from  Table 8.4 that the mean absolute deviations of spectra obtained by ideal from those 

obtained by Monte Carlo method are less than 0.8% for all droplet sizes. And such a level of 

deviation has been found to have little influence on the inversed results. Such a conclusion is 

also supported by the numerous calculations performed for droplets of other diameters within 

[0.1, 5.0] µm. Therefore for the current optical configuration for wet steam measurement, 

influence of multiple scattering can be neglected. We comment that the negligible influence of 

multiple scattering is mainly due to the sufficiently small solid angle ensured by both small 

cross section of the detecting fiber (πr2≈0.5 mm2) and long distance from measurement zone to 

the detector.  
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   (c) 

Fig. 8.10 Extinction spectra of droplets with increasing number concentration. The distance from the measurement 

zone to the detector L is 100 mm. The length of measurement zone is Z=70 mm, which is the realistic situation of 

online wet steam measurement. (a) D=1.0 µm and Cn increases from 4.29E+12 to 3.86E+13/m3; (b) D=0.5 µm and 

and Cn increases from 2.50E+13 to 2.25E+14/m3; c) D=3.0 µm and Cn increases from 6.50E+11 to 5.85E+12/m3. 

Table 8.4 Mean absolute deviation of spectrum of the ideal model for wet steam measurement in the situation of high 

concentration (Z=70 mm and L=100 mm). 

D (µm) Cn δa, mean (%) 

0.5 2.50E+13 0.64 

0.5 7.50E+13 0.41 

0.5 1.50E+14 0.40 

0.5 2.25E+14 0.42 

1.0 4.29E+12 0.45 

1.0 1.29E+13 0.30 

1.0 2.57E+13 0.29 

1.0 3.86E+13 0.54 

3.0 6.50E+11 0.44 

3.0 1.95E+12 0.32 

3.0 3.90E+12 0.43 

3.0 5.85E+12 0.76 



 Chapter 8. Particle Sizing in High Concentration 

 202

8.3 Experimental Studies 

The experimental studies of particle sizing in the situation of high concentration is conducted in 

the present subsection to verify the conclusion obtained in the preceding subsection by 

numerical simulation stating that multiple scattering in the situation of high concentration can be 

neglected for the current optical configuration of the SLEM system. HL 2000 is used as the light 

source. The parameters used for data acquisition and inversion are listed in Table. 7.1 of Chapter 

7. 

8.3.1 Polystyrene particles 

Measurements are carried out for the polystyrene particles of diameters 0.5, 1.0, and 3.0 µm, 

respectively. For each concentration, a series of 100 continuous spectra are measured for 

averaging. The measurement zone has the length Z=40 mm. The detector is fixed 100 mm away 

from the measurement zone (L=150 mm). The measured and reconstructed spectra are 

illustrated in  Fig. 8.11. We find that the mean optical thickness increases from ξ (λ) <1.0 

(single scattering regime) to ξ (λ)max~4.0 (multiple scattering regime), which corresponds to a 

mean transmission ratio T  being ~0.02. Further increasing the number concentration Cn leads 

the transmitted intensities to be subjected more to the noises so that local oscillations of 

spectrum take place at the edge regions of the wavelength range. This is because for a halogen 

light source, the original intensities at the edge regions of the wavelength range are not as strong 

as those within the central zone. Moreover, for particles of the same diameter D less than 1.0µm 

(D≤1.0 µm), light extinction at small wavelengths, which corresponding to relatively large size 

parameters, is more remarkable than that at large wavelengths. Therefore the transmitted 

intensities become even less so that they are more susceptible to be eroded by the noises. 

Considering all these effects, we use the spectra without drastic oscillation for inversion (see  Fig. 

8.11) and the inversed PSD are demonstrated in  Fig. 8.12. The inversed results of SMDs D32 and 

volume concentrations Cv are illustrated in  Fig. 8.13 and  Fig. 8.14, respectively. For the 

polystyrene particles of diameter D=0.5 µm, very little differences among the inversed PSD 

curves can be recognized for different particle concentrations. For the polystyrene particle of the 

diameter D=1.0 µm, when compared to the solid PSD curve corresponding to the single 
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scattering regime the PSD curves corresponding to the multiple scattering regime have very 

slight leftward or rightward floating. As to the polystyrene particles of the diameter D=3.0 µm, a 

spilt PSD appears at the vicinity of D=2.4 µm for concentration series 3 and 4. This might be 

caused by the lack of the extinction information at the near infrared region of wavelength λ>0.85 

µm. However, the inversed SMDs D32 for these concentrations are nearly same, as indicated by 

 Fig. 8.13 and  Table 8.5. And the inversed volume concentrations show an incremental tendency 

(see  Fig. 8.14 and  Table 8.6), as it should be.  

Through these measurements of polystyrene particles in the situation of high concentration, we 

have proved that for the current measurement system of SLEM, multiple scattering does not 

have little influence on the inversed results. Such a validation ensures the applicability of SLEM 

in wet steam measurement of high concentration, which is to be exemplified in the next 

subsection. 
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    (c) 

Fig. 8.11 Measured and reconstructed spectra of the standard polystyrene particles of the diameters: (a) D=0.5 µm; 

(b) D=1.0 µm; (c) D=3.0 µm. 
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(c) 

Fig. 8.12 Inversed PSD for the standard polystyrene particles of the diameters: (a) D=0.5 µm; (b) D=1.0 µm; (c) 

D=3.0 µm. 
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Fig. 8.13 Inversed SMDs (D32) for the standard polystyrene particles of the diameters: (a) D=0.5 µm; (b) D=1.0 µm; 

(c) D=3.0 µm. 

Table 8.5 Inversed Sauter mean diameters D32 at different concentrations (corresponding to  Fig. 8.13). 

 D32 inversed (µm) 

D given (µm) Conc. 1 Conc. 2 Conc. 3 Conc. 4 Conc. 5 Conc. 6 

0.5 0.526 0.526 0.526 0.526 0.536 0.535 

1.0 1.029 1.037 1.045 1.039 1.055 — 
3.0 3.026 3.029 3.048 3.040 — — 
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Fig. 8.14 Inversed volume concentrations (Cv) for the standard polystyrene particles of the diameters: (a) D=0.5 µm; 

(b) D=1.0 µm; (c) D=3.0 µm. 

Table 8.6 Inversed volume concentrations Cv (corresponding to  Fig. 8.14). 

 Cv inversed (E–6) 

D given (µm) Conc. 1 Conc. 2 Conc. 3 Conc. 4 Conc. 5 Conc. 6 

0.5 6.8906 15.588 23.147 32.857 48.056 56.508 

1.0 3.0266 7.557 11.323 17.740 27.388 — 
3.0 10.209 23.271 57.314 87.270 — — 

8.3.2 Wet steam 

In wet steam measurement, we might also meet the situation of high concentration. Numerical 

simulations by using the Monte Carlo method has indicated that for the current measurement 

system, multiple scattering happening for the optical thickness 1<ξ<10 has little influence on the 

extinction spectrum when the detecting fiber locates more than 100 mm away from the 

measurement zone of length Z=70 mm. Such a conclusion is confirmed by the experimental 

studies performed in the preceding part for polystyrene particles. Thus in this subsection, we 

give some results of wet steam measurement in the situation of high concentration. The optical 

measurement system and the turbine system have been introduced in Chapter 7. In the 

measurement, the distance from the measurement zone to the detecting fiber is about 120 mm.  

 Fig. 8.15 presents an extinction spectrum averaged from a series of 100 continuously acquired 
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spectra within 10s for a certain working condition of pressure and temperature. The maximum 

optical thickness (ξmax=~4.0) is found locating at the wavelength λ=0.55 µm, which corresponds 

to the multiple scattering regime with the transmission ratio (T) being ~0.02. Corresponding to 

such a spectrum,  Fig. 8.16 and  Fig. 8.17 are the results of temporal evolutions of SMD D32 and 

the measured wetness YM, respectively. The mean values of D32 and wetness are 0.63 µm and 

2.69%, respectively, around which slight fluctuations of the temporal results of D32 ( Fig. 8.16) 

and YM ( Fig. 8.17) are found. The maximum deviations of the fluctuations from the mean values 

are 2.72% and 3.89% for D32 and YM, respectively. This indicates that the flow is steady at the 

current working condition.  
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Fig. 8.15 Extinction spectrum averaged from a series of 100 continuously acquired spectra. 
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Fig. 8.16 Temporal evolution of Sauter mean diameter D32 measured  at a certain pressure and temperature. 
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Fig. 8.17 Temporal evolution of measured wetness YM measured at a certain pressure and temperature. 

8.4 Conclusion 

By using Monte Carlo method, we evaluate the influence of the scattered intensities by the 

particles in the edge zone and the influence of the multiple scattering on the extinction spectrum 

obtained by the current SLEM system. It is found that for the polystyrene particle measurement 

by using the sampling cell of length Z=40 mm, the edge zone effect can be neglected once the 

detecting fiber located more than 150 mm away. And for the wet steam measurement of 

measurement zone Z=70 mm, the edge zone effect can be neglected once the detecting fiber is 

located more than 100 mm away. At these distances, the multiple scattering has little influences 

on the extinction spectrum for the optical thickness 1.0≤ξ≤10.0, which are proved by the 

experiments.  
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Chapter 9. Conclusions and Perspectives 

The present thesis is contributed to the development of the generalized Lorenz-Mie theory 

(GLMT) and the geometrical optics (GO) to describe the laser beam scattering by a 

homogeneous spheroid and the application of the spectral light extinction method in wet steam 

measurement. In this chapter we draw some conclusions from the work presented in the thesis 

and give a perspective on further studies.  

9.1 Theory 

On the basis of the GLMT for a sphere and plane wave scattering theory for a spheroid, which 

are proposed by Gouesbet and his colleagues since 1980’s and Asano and Yamamoto in 1970’s, 

respectively, arbitrary shaped beam scattering by a homogeneous spheroid is studied in this 

thesis. The beam is first expanded in the spheroidal coordinates so that the spheroidal beam 

shape coefficients ( ,
m
n TEG , ,

m
n TMG ) are obtained. In such a process, the classical localization 

principle is found inapplicable when the Cartesian coordinates of the particle and the beam are 

not parallel to each other. Instead, the integral method is employed. Next, the variable separation 

method is applied and the equations are established from the boundary conditions. Through 

solving these equations, the unknown coefficients multiplied with the spheroidal vector wave 

functions describing the scattered and internal fields are determined. Analytical expressions of 

the far-field scattering amplitudes, the scattering and extinction coefficients, and the radiation 

pressure force exerted on the spheroid are yielded. Numerical calculations are performed and 

indicate that the present theory can be used for arbitrary laser beam scattering by a spheroid, 

which can be prolate or oblate, transparent or absorbing. This work is potentially useful in laser 

particle characterization techniques for the non-spherical particles, including the phase Doppler 

anemometry, the laser diffraction method, and the rainbow thermometry, etc. The analytical 

expressions for rigorous radiation pressure force prediction are of particularly interests to optical 

trapping and manipulation of the spheroidal particles.  

To make up for the disadvantages of the rigorous theory in far-field scattering calculation for the 

spheroids of large size, we extend the classical GO to describe shaped beam scattering by a 
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sphere and a spheroid. A complete GO solution is given for the circular Gaussian beam 

scattering by a sphere and a spheroid. Then our extended GO method is used for geometric 

rainbow prediction for spheroid of any aspect ratio. The requirement that the aspect ratio should 

be near to unity, which is premise of employing Moebius’ method for geometric rainbow 

prediction, was removed.  

On such a basis, more work remains to be done in the future. Relying on a robust ray tracing 

program and a generalized diffraction theory for shaped beam scattering by a spheroid, more 

shaped beams, e.g., the elliptical Gaussian beam and the higher-order Hermite-Gaussian beam 

of TEMmn mode, can be used as the incident beams. And the current studies on end-on incidence 

of the laser beam are also expected to be extended to the case of oblique incidence or side-on 

incidence. A further extension of the GO to other non-spherical but regularly shaped particles 

remains to be done. Moreover, the efforts have only been made for the far-field scattering so far. 

In fact, GO’s further application in radiation pressure force prediction for a spheroid is not a 

very difficult step, which is to be done in the future.  

9.2 Experiment 

The spectral light extinction method (SLEM) is applied in the development of an optical device 

for online wet steam measurement. Two algorithms, the Phillip-Twomey-NNLS algorithm 

(Twomey algorithm) and the optimized regularization technique (ORT) are used for inversion. 

The ORT proves to have a better performance in practical data inversion than Twomey 

algorithm does. The standard polystyrene particles and water and milk emulsion are used to 

evaluate the stability of the measurement system and its sensibility to the variation of particle 

concentration. Our experiments show that although the absolute measurement of D32 is not 

highly accurate (with errors less than 10%), the measurement of volume concentration variation 

∆Cv (relative measurement) by the current system is high enough, with errors less than 0.4% for 

∆Cv=0.5%.  

Next, the wet steam measurements are carried out on an experimental turbine in Electricity of 

France (EDF). To evaluate the potential influences of the scattered intensities by the particles in 

the edge zone and the multiple scattering on the measurement results, the Monte Carlo method 
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is used for direct numerical simulation of the current system. The results show that once the 

distance between the measurement zone and detecting fiber is long enough, the scattered 

intensities by the particles in the edge zone have negligible influence on the extinction spectrum. 

Moreover, because the size of the detector is small enough (the diameter 0.4 mm), the multiple 

scattering has a negligible influence on the extinction spectrum. By using the SLEM system 

developed in the present thesis, further studies on wet steam measurement are expected to be 

made.  
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Appendix A  

Computation of eigenvalues λmn and expansion coefficients dr 

We adopt the method proposed by Hodge (1970) to calculate the eigenvalues λmn in prolate 

spheroidal coordinates. Substituting Eq. (2-83) into Eq. (2-4), we obtain the following recursion 

relation for expansion coefficients: 

 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) 0m mn mn mn mn mn
r r r mn r r rA c d c B c c d c C c d cλ+ −⎡ ⎤+ − + =⎣ ⎦ , (A1)

where  

 2(2 2)(2 1)( )
(2 2 5)(2 2 3)

m
r

m r m rA c c
m r m r

+ + + +
=

+ + + +
, (A2)

 
2

22( )( 1) 2 1( ) ( )( 1)
(2 2 3)(2 2 1)

m
r

m r m r mB c m r m r c
m r m r
+ + + − −

= + + + +
+ + + −

, (A3)

and 

 2( 1)( )
(2 2 3)(2 2 1)

m
r

r rC c c
m r m r

−
=

+ − + −
. (A4)

Eq.(A1) can be rewritten into the following detailed form: 

  0 2 0 0( ) ( ) ( ) ( ) ( ) 0m mn mn mn
mnA c d c B c c d cλ⎡ ⎤+ − =⎣ ⎦ , (A5)

 1 3 1 1( ) ( ) ( ) ( ) ( ) 0m mn mn mn
mnA c d c B c c d cλ⎡ ⎤+ − =⎣ ⎦ , (A6)

 2 4 2 2 2 0( ) ( ) ( ) ( ) ( ) ( ) ( ) 0m mn mn mn mn mn
mnA c d c B c c d c C c d cλ⎡ ⎤+ − + =⎣ ⎦  (A7)

 3 5 3 3 3 1( ) ( ) ( ) ( ) ( ) ( ) ( ) 0m mn mn mn mn mn
mnA c d c B c c d c C c d cλ⎡ ⎤+ − + =⎣ ⎦  (A8)

 … 
 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) 0m mn mn mn mn mn

r r r mn r r rA c d c B c c d c C c d cλ+ −⎡ ⎤+ − + =⎣ ⎦ . (A9)

Then the eigenvalues can be calculated by solving the following matrix equation set in 

tridiagonal form (Han, 2001a):  

mn 
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1 1 1 1
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When the eigenvalues λmn are known, the ratio of the expansion coefficients 2( ) / ( )mn mn
r rd c d c−  can 

be obtained through the recursion relations expressed by Eqs.(A5)-(A9). To determine each 

expansion coefficient, we also need to invoke the following normalization relationship for 

( )mn
rd c : 

1 1
2 2
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Appendix B  

Spheroidal vector wave functions 

The spheroidal vector wave functions are defined as follows (Barton, 1995): 

 , , ,mn mn mn mnM M Mξ ξ η η φ φ= + +M e e e , (B1)
 , , ,mn mn mn mnN N Nξ ξ η η φ φ= + +N e e e , (B2)

where 
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where (cos ) (cos ) / (cos )mn mnS dS dθ θ θ′ = . In all pairs of signs in the above expressions, the 

upper signs pertain to the prolate functions and the lower ones pertain to the oblate functions. 

For a description of the incident and internal fields (E(i), H(i)) and (E(t), H(t)), the superscript j on 
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the radial function Rmn is 1, while for the description of the scattered fields (E(s), H(s)), j is 3.  

Or, the spheroidal vector wave functions can be written into the combination of odd and even 

items as followings: 

 mn emn omni= +M M M , (B9)
 mn emn omni= +N N N , (B10)

where the subscripts o and e refer to the odd and even functions, respectively and 
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Appendix C  

Orthogonality relations for some functions 

The orthogonality relation for exponentials exp( )ipφ  is 

 [ ]
 2

' 0
exp ( ') 2 ppi p p d

π
φ φ πδ− =∫ . (C1)

If we denote m
nτ  and m

nπ  as the generalized Legendre functions of Ferrer’s definition as follows:  
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four orthogonality relations of them used in RPF calculation for a spherical particle have been 

found as follows (Gouesbet et al., 1988):  
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Since the spheroidal angular functions Spn( Ic , cosθ ) can be written as infinite series of the 

Legendre functions (cos )p
nP θ  as follows:  
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after some mathematical algebra, '
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Appendix D  

Spherical vector wave functions 

The spherical vector wave functions are defined as follows (Stratton, 1941):  

 , ,mn mn mnm mθ θ φ φ= +m e e , (D1)
 , , ,mn mn r r mn mnn n nθ θ φ φ= + +n e e e , (D2)

where 
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θ
∂

=
∂

. (D7)

where (cos ) ( / ) (cos )m
mn nP Pθ θ θ′ = ∂ ∂ . For the description of the incident and internal fields (E(i), 

H(i)) and (E(t), H(t)), ( )nz kr  is the nth-order spherical Bessel function, while for the description 

of the scattered field (E(s), H(s)), ( )nz kr  is the nth-order Hankel function of the first kind. 

Or, the spherical vector wave functions can be written into the combination of odd and even 

items as followings: 

 mn emn omni= +m m m , (D8)
 mn emn omni= +n n n , (D9)

where the subscripts o and e refer to the odd and even functions, respectively and 
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Appendix E  

Electromagnetic fields of an astigmatic elliptical Gaussian beam 

Following Davis’s first order approximation (Davis, 1979), the laser sheet has the following 

description (Ren et al., 1994b, c; Siegman, 1986) in its own Cartesian coordinates OB-uvw:  

 0 0 exp( )sh
uE E ikwψ= , (E1)

 0vE = , (E2)

 
2 u

w u
u

Q uE E
l

= − , (E3)

 0uH = , (E4)
 0 0 exp( )sh

vH H ikwψ= , (E5)

 
2 v

w v
v

Q vH H
l

= − , (E6)

where 

 
2 2

0 2 2
0 0

expsh
u v v v

u v

u vi Q Q i Q Q
w w

ψ
⎡ ⎤⎛ ⎞

= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (E7)

as well as 

 
1

2( ) /u
u u

Q
i w w l

=
− + −

, (E8)

 
1

2( ) /v
v v

Q
i w w l

=
− + −

, (E9)

 2
0u ul kw= , (E10)

 2
0v vl kw= , (E11)

where w0u and w0v are the beam waist radii along the u and v axes respectively, as well as wu and 

wv are the locations of the beam waists along the u and v axes (w0u and w0v), respectively. When 

we set wu=wv=0, the common elliptical Gaussian beam with waist plane locating at w=0 will be 

recovered. When we further set w0u=w0v, the special case of circular Gaussian beam can be 

recovered.  
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Appendix F  

Presentation of the Software TURACE 5.0 

1). Interface for on-line and off-line particle sizing 

 

2). Demonstration of the extinction coefficient curve for a given refractive index of the particle 
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3). Direct calculation of the extinction spectrum and inversion algorithm test 

 

4). Interface for stability test of the light source 
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5). Interface for parameter input 

A. Wave parameters 

 

B. Particle parameters 
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C. Scan parameters 

 

D. Parameters for inversion algorithms 

     D1). Optimized Regularization Technique (ORT)     D2). Phillips-Twomey-NNLS (Twomey algorithm) 

                  

                             D3). Optical length and density ratio of the two phases of the water 
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Appendix G  

Characteristics of the spectrometers  

Type SD 2000 HR 2000+ 

Detector 
Sony ILX511 linear silicon 

CCD array 
Idem 

Range of wavelength 350 nm - 1100 nm (EDF) 200 nm - 1100 nm (EDF) 

Pixels 2048 pixels Idem 

Signal : noise 250 : 1 250 : 1 

Integration time 3 ms - 60 min 1 ms – 65 min 

Linearity of intensity < 0.3 % 

Precision of wavelength < 0.3 nm 

Communication  

by telephone (Mr. Demezet)



Appendices 

 227

Appendix H  

Characteristics of the light sources 

Characteristics HL 2000 DH 2000 

Power supply 1.4 A @ 5VDC 0.3 A/85 V (D) and 1.67 A/11.5 VDC(H)

Range of wavelength 360-2000 nm 210-400 nm and 360-1500 nm 

Stability 0.5% <5×10–6  

Current – voltage drift <0.3% / hour <0.01 % / hour 

Time for stabilization ~5 min. ~40 min. (D) and ~20 min. (H) 
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论文摘要 

本文分为理论和实验两部分。理论部分致力于研究均匀椭球颗粒对任意形状、任意

位置和任意入射角的波束的散射，发展了互相独立的2种方法：广义米理论和扩展的几何

光学方法。实验部分包括光谱消光法在线测量系统的开发及其在湿蒸汽测量中的应用。

全文摘要简述如下： 

理论研究： 

1．精确理论：系统地解决了椭球形颗粒对任意激光束（有形波束）的散射问题，包

括波束在椭球坐标系中的展开，散射场，散射系数，消光系数，辐射压力等物理量的解

析解。理论体系的建立主要基于Gouesbet等人自80年代起创立的球形颗粒对有形波束散

射的广义米理论和Asano等人70年代创立的椭球平面波散射理论； 

2：近似理论：提出了几何光学描述球和椭球颗粒对有形波束散射的方法，研究了在

轴入射的情况下，球和椭球对高斯光束的散射。该方法弥补了精确理论在计算大颗粒散

射场方面的缺陷，为几何光学研究非球形颗粒对有形波束的散射奠定了基础。特别地，

该方法可用于计算任意形状椭球的彩虹角位置，突破了Moebius于1910年提出的椭球彩虹

角近似计算理论中对椭球两轴之比 κ 的限制（0.95≤κ≤1.05）。 

实验研究： 

开发了基于光谱消光法的颗粒测量系统。为评估测量误差和系统的稳定性，进行了

标准颗粒测量和灵敏度测试实验；之后，成功地在法国国家电力公司（EDF）的实验汽

轮机上进行了湿蒸汽在线测量。数值模拟和实验结果表明：所开发系统可用于颗粒系统

浓度和粒径分布瞬态变化的测量，为相关工业过程检测和控制提供可靠的依据。 
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