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à des connaissances que ceux dont nous avons les écrits
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Claude ROZÉ for examining. I would like to thank all of them for their patience in

reading the manuscript as well as for their precious comments.

Most of all, I would like to thank my family and friends for their unwavering

support and encouragement. Those are my greatest source of strength and inspiration.

iii





Contents

1 Introduction 5

2 Classical methods for light scattering by a cylinder 13

2.1 Lorenz-Mie theory for circular cylinder . . . . . . . . . . . . . . . . . . 14

2.2 Generalized Lorenz-Mie theory for cylinder . . . . . . . . . . . . . . . . 20

2.3 Geometrical optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 VCRM for plane wave scattering by an elliptical cylinder 31

3.1 Vectorial complex ray model . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 VCRM for an infinite elliptical cylinder . . . . . . . . . . . . . . . . . . 36

3.2.1 Ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Convergence or divergence factor . . . . . . . . . . . . . . . . . 38

3.2.3 Phase shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.4 Absorption Factor . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.5 Amplitude of scattered field . . . . . . . . . . . . . . . . . . . . 41

3.3 Numerical Results and discussion . . . . . . . . . . . . . . . . . . . . . 42

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 VCRM for scattering of Gaussian beam by an elliptical cylinder 57

4.1 VCRM for scattering of a shaped beam . . . . . . . . . . . . . . . . . 58

4.2 Transformation of coordinate systems . . . . . . . . . . . . . . . . . . 61

4.3 Wavefront curvature and propagation direction . . . . . . . . . . . . . . 63

4.4 Description of Gaussian beams . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Two dimensional Gaussian beam . . . . . . . . . . . . . . . . . 65

4.4.2 Circular Gaussian beam . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 Astigmatic elliptical Gaussian beam . . . . . . . . . . . . . . . . 68

4.5 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . . 70

v



vi Contents

4.5.1 Two dimensional Gaussian beam . . . . . . . . . . . . . . . . . 71

4.5.2 Circular Gaussian beam . . . . . . . . . . . . . . . . . . . . . . 75

4.5.3 Astigmatic elliptical Gaussian beam . . . . . . . . . . . . . . . 82

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Plane wave scattering by an elliptical cylinder at diagonal incidence 87

5.1 VCRM for an infinite elliptical cylinder at diagonal incidence . . . . . . 88

5.1.1 Ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.2 Curvature of wavefront . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.3 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.4 Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusions and perspectives 101

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 105
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Chapter 1

Introduction

In nature, light can be observed directly from its source, such as the light from stars,

lamps or fire. However, most of the light we see arrive at our eyes indirectly: the light

from the moon is just the reflection of the light emitted by the sun, the blue sky is due

to the scattering of sun light by molecules constituting the atmosphere, the marvel of

rainbow is nothing more than the refraction of light by raindrops.

The human has being always interested in those phenomena because of two main

reasons. The first is due to the curiosity. From antiquity, we are anxious to understand

the mysteries of nature. As early as the seventeenth century, Descartes gave a very

satisfactory mathematical explanation of the rainbows with his newly established

geometrical optics [1]. The multicolored arches often found in the east in the afternoon

are due to the refraction and the internal reflection of light rays on the surface of water

droplets. The dependence of the refractive index of the particle on the wavelength

(color) of the sunlight makes the different colors at different directions, so forming

the multicolored arches. The red (or orange) color of the sun in the morning or in

the evening as well as the blue sky can both be explained by the Rayleigh theory:

the scattering efficiency of molecules and very small particles in the air decreases

dramatically with the wavelength of the light. So the red color light (i.e. large

wavelength) is easy to go through the thick atmosphere than the blue one while the

later is more scattered in the sky.

The second reason is that the knowledge acquired in understanding those phe-

nomena serves us in the development of new measurement technologies. When the

light interacts with particles, or more generally, with any objects, the light scattered

from them depends on their properties. By measurement of different quantities of the

5



6 Chapter 1. Introduction

scattered light: intensity, polarization, spectrum, etc. we may deduce the character-

istics of particle: size, shape, temperature and material (via refractive index). For

example, the rainbow refractometry techniques has since long been used to measure

the refractive index and the size of spherical particles and circular cylinders. Since

the invention of laser, the optical metrology has got a tremendous boom. Many tra-

ditional techniques have been considerably improved and much more new techniques

are being developed. All these wonderful successes are based on the achievement of

the fundamental research on the theory of the interaction of light with particles – this

is just the initial motivation of the thesis.

In the environment control, the biochemistry, the fluid mechanics and the combus-

tion fields, it is essential to measure the characteristics of particles whose size often

ranges from a few tens of nanometers to several hundreds of micrometers. According

to the characteristics of the particles to be measured, various optical techniques have

been developed. For example, the diameter of wires can be measured by diffraction.

Most of these instruments use, as a scattering model, the Fraunhofer diffraction, the

measurement precision can be improved by more rigorous theory – Lorenz-Mie the-

ory (LMT) [2, 3, 4]. Thus the size of the fibers of wool or metals in industry can

be measured with same techniques by supposing the cylinder to be circular. In fluid

mechanics, especially what concerns the injection of oil in the internal combustion

motor, the instability and the breakup of the liquid jets are an essential problem in

the atomization since the structure of jet is often very complex [5, 6, 7, 8]. A free jet

is not circular cylindrical even in the most stable case. The size, the temperature and

the composition of individual droplets or droplet system generated in such process

can be measured by rainbow refractometry techniques [9], the Phase Doppler Inter-

ferometry [10] or some hybrid techniques. However, almost in all cases, the particles

are supposed to be perfectly spherical or circular cylindrical while the real shape of

the particles have rarely so ideal shapes. The research on the interaction of com-

plex shaped (non-spherical / non-circular cylindrical) particles is a challenge in the

development of optical metrology in very large scope of applications.

Among the non-spherical particles, the infinite circular cylinder is the simplest

and the associated scattering problem can be dealt with by the similar manner as

for the spherical case. Many researchers have contributed to the research work for

circular cylinder scattering [11, 12, 2, 6, 13, 14, 15]. However, most particles in the

nature and in industrial process are neither spherical nor circular cylindrical. In the

ink-jet printing for instance, it is very important to understand the physics involved in
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the precise manipulation of liquid jets and droplets [16]. In the atomization process,

the instability and the breakup of the jet depend much on the structure of injector

and also the properties of the liquid (temperature, viscosity, pressure). The precise

measurement of the 3D structure of jets are essential to understand the mechanism

of atomization and for the design of more efficient injectors. The elliptical shape

is the first order approximation of real non-circular cylinder and can provide good

understanding of the influence of the non-circularity on the scattering properties.

Moreover, the elliptical cylinder is also an useful model in the design of antennas

and the detection of objects by radar [17, 18, 19]. The scattering of acoustic waves

by an elliptical cylinder finds also important applications [20, 18]. Therefore, the

study of the scattering of cylinder of elliptical section is fundamental not only in the

development of optical metrology, but also in the electromagnetism theory and in the

acoustics theory.

Particles light scattering theories and models

Many theories and models have been developed to describe the elastic interaction

between light and particles, which provide the basis for optical metrology. They can

be categorized into three groups: rigorous theories, approximate models and numerical

methods.

Rigorous theories are based on the solution of the Maxwell equations with a

method of a separation of the varieties. The most classical one is the Lorenz-Mie

theory (LMT) which deals with the scattering of a plane wave by a homogeneous

isotropic spherical particle. LMT is often used as a reference to validate other meth-

ods. Similar theories are also developed for regular shaped particles whose surface

corresponds to a mathematical coordinates system: spheroid, ellipsoid, infinite circu-

lar or elliptical cylinder. One of the most important advantages of those theories is

that they provide rigorous solutions for scattering problem. However, the special func-

tions involved in such theories are often difficult to evaluate. Except for the spherical

particle and infinite circular cylinder, the size of the particle which can be calculated

with the algorithms and computers can rarely reach a hundred wavelengths of the

incident light.

On the other hand, approximate models, though not rigorous, are very flexible and

permit to deal with the scattering of complex shaped particles. The geometrical optics
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(GO), the physical optics, the geometrical theory of diffraction [21] and the physical

theory of diffraction are often used separately or in complementary each other to

allow predicting the scattering of particles which are relatively large compared to

the incident wavelength. In GO, the light wave is considered as bundles of rays

and the interaction of the light with the particle is just the refraction and reflection

of the rays on the surfaces of the particle. It can be applied to large particles of

complex shape and allows isolating the contributions of different orders of rays and the

effects of interferences. It helps to understand the mechanism of scattering. Effects

such as absorption and interference can be taken into account separately and the

diffraction can be added to improve its precision in forward direction. Furthermore,

fast calculations and direct understanding are two other advantages over the rigorous

theories. In the case of the scattering by a spherical particle, or a infinite circular

cylinder, the GO is proved to be able to predict very accurately the scattering diagram

in almost all directions. But, though theoretically possible, it is rarely applied to the

scattering of irregular shaped particles.

Alternatively, the scattering problem of arbitrary shaped particles can be dealt

with by direct numerical solution of Maxwell’s equations. There exist two classes of

numerical methods. The first one uses a differential form of the governing equations

and requires the discretization (meshing) of the entire domain in which the electro-

magnetic fields reside, two of the most common approaches in this class are the finite

difference method (FDM) and finite element method(FEM). The second class is the

integral equation methods which require instead a discretization of only the sources

of electromagnetic field, such as the discrete dipole approximation(DDA) and the

method of moment (MoM). These methods are very flexible in the shape of the par-

ticle, but they are very costly in term of computer resources and the size parameter

of the scatter is also severely limited [22].

We can conclude, therefore, that there are few means to deal with the scattering

of large complex shaped particles. The ambition of this thesis is consequently to try

to make a step forward in this direction by using the Vectorial Complex Ray Model

(VCRM) recently developed at CORIA. Among the complex shaped (non-spherical /

non-circular cylindrical) particles, the infinite elliptical cylinder is the simplest but it

will permit already to examine the effect of non-circularity and also the scattering of a

shaped beam at different incident directions. The PhD thesis is dedicated therefore to

the scattering of an infinite cylinder of elliptical section. We will give in the following

the state of arts in the field of the scattering of a cylinder for both the rigorous theories
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and the approximate models.

Rigorous theories for light scattering by a cylinder

During the past decades, many researchers have devoted to rigorous theories of light

scattering by cylinders, and more particularly with the Lorenz-Mie theory (LMT).

When the light illumination on the particle is homogeneous, the incident wave

is considered as a plane wave. As early as the middle of the last century. Wait

has studied the light scattering of a plane wave by a circular dielectric cylinder at

oblique incidence [23]. Van de Hulst has then given the formulation of the scattering

field coefficients for perpendicular and obliquely incidence [3]. Bohren and Huffman

presents a very complete and elegant form in their book [4]. Then the formulation

and program of light scattering for a circular cylinder have been given by Barber

and Hill [24]. In the case of elliptical cylinder, the study has been stated by using

exact solutions in terms of Mathieu functions to predict the back scattering under

normal incidence in 1965 [17]. By considering the scattering by elliptic cylinders on

various configuration, a complete set of solutions is provided by Sebak and Safai [25].

The evaluation for the scattering of a plane wave by an infinite elliptical metallic

cylinder is used by two different methods, elliptical-cylindrical wave functions and a

shape perturbation method [26]. The study for multilayered circular cylinders has also

been documented. Lock and Adler [27], and Li et al [28, 29] have contributed to the

Debye-series analysis of the scattering of an homogeneous and multilayered cylinders.

With the emergence of laser and new light sources, the collimated beams are

widely used in optical metrology. The scattering of a collimated beam by a cylinder

has also been well documented in the past years. By considering amplitude and phase

distribution, Kozaki have analyzed the scattering of a two dimension Gaussian beam

by a conducting cylinder [30] and a dielectric cylinder [31]. In 1979, Kojima et al

have treated the scattering of an off-axis Gaussian beam from a circular cylinder

by the Fourier-series-expansion method [32]. Then E. Zimmermann investigated the

scattering of an off-axis incident two dimensional Gaussian beam by a homogenous

dielectric cylinder at normal incidence based on the exact solution of the Helmholtz

equation and compared the results with experiments [33]. Later, Gouesbet has tried

different methods for the scattering of a Gaussian beam by circular cylinder (see

[34] and references therein), but he has not given numerical results. Ren et al have

used the plane wave expansion for the scattering of Gaussian beam by a cylinder at
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normal incidence in the framework of the Generalized Lorenz-Mie Theory (GLMT)

[35] and introduced the Localized Approximation for the calculation of the beam

shaped coefficients in the cylindrical coordinate system[35, 36]. They have given

numerical results of scattered intensity in the region as far as 8mm from a cylinder of

1µm of radius [35]. About at the same time, Lock used similar method to study the

light scattering of a diagonally incident focused Gaussian beam by an infinite cylinder

[37, 38]. This approach has later been extended to the scattering of shaped beam by an

elliptical cylinder [39, 40, 41]. The research groups of Wu [42, 43] and Caorsi et al [44]

used also the Mathieu functions to study the scattering of a homogeneous anisotropic

and multilayered elliptical cylinder. However, this theory cannot be applied to large

particles due to the difficulty in the evaluation of the elliptical functions.

The scattering of an elliptical cylinder illuminated by a Gaussian beam is much

more difficult. There exist theoretical solutions for the elliptical infinite cylinder, but,

the numerical implementation is very difficulty due to the calculation of the related

special functions. Gouesbet et al have devoted to scattering of an elliptical cylinder by

shaped beam by using partial wave expression [45, 46]. Then they employed a plane

wave spectrum approach [35] to describe arbitrary shaped beam [41]. After that, they

extended the localized approximation to the elliptical coordinate system [40] and

exploited Generalized Lorenz-Mie theory for elliptical infinite cylinders [47, 39]. In

all aforementioned work, only a little numerical results are provided. Although many

authors devoted to study the light scattering of a circular or an elliptical cylinder, the

size of the cylinder is always seriously limited, often to several wavelengths.

In the case of elliptical cylinder illuminated diagonally by a wave, due to the cross

polarization, the scattering problem is more difficult. Yeh has provided in 1964 exact

solutions for the elliptical fiber scattering, but no any numerical results are given [48].

Then the impedance elliptical cylinder was studied by the use of two methods [49].

One is based on the transformation of the elliptical cylinder into circular cylinder

in polar coordinates, the other is the finite difference method(FDM) in the elliptical

coordinate system. The integral-integrodifferential equations was also employed to

study dielectric cylinders having arbitrary shaped with smooth boundaries [50]. Re-

cently, Grigorios has given numerical results of light scattering by elliptical dielectric

cylinders using the separation of variable method (SVM) [51].
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Approximate methods for light scattering by a cylinder

Although the rigorous theories can describe the interaction between waves and par-

ticles, the numerical calculation is difficult or impossible for larger non-spherical /

non-cylindrical particles. Therefore, the geometrical optics (GO), or a ray model is

expected to be able, instead of the rigorous theories, to deal with the scattering of

large and irregular shaped particles.

In the case of an infinite cylinder illuminated by a plane wave, the tracing of rays

is simple and very similar with the sphere [3]. Marcuse has obtained the cross section

of an elliptical fiber by ray tracing [52]. Holoubek predicted the back scattering

of a unclad fibers with the circular cross section [53]. Steinhardt and Fukshansky

calculated the intensity distribution in finite circular cylindrical media in 1987 [54].

Adler et al studied the rainbow scattering by a cylinder of nearly elliptical cross section

also by using the geometrical optics [55]. But usually the interference effect is not

taken into account, especially when the cylinder is not circular. The group of Yang

has combined the geometrical optics with integral equation [56, 57] to calculate the

scattering properties of different kinds of particles [58, 59, 60]. Hovenac [61] has shown

that in the case of a spherical particle, by taking into account correctly interference

phenomenon, GO can predict very precisely the scattering in almost directions.

For the scattering of a shaped beam by a spherical particle, Xu et al have studied

the GO for spheroid particle in end-top illumination case [62]. However, as soon as

we want to extend the GO to a non spherical or non circular cylindrical particle, the

evaluation of the divergence/convergence [63] and the phase shift due to the focal

line [3] become a very difficult or impossible task. Based on the scattering theory

by spherical particle, Xu et la then evaluated the scattering diagrams of a spheroidal

particle [64]. There is much less work on GO for the scattering of cylinder illuminated

by shaped beams. For the circular cylinder, we find only that Krattiger used the

interference of reflected and transmitted rays in a far field for the measurement of the

refractive index of capillary eletrophoresis [65]. Unfortunately, we have not found the

study for Gaussian beam scattering by an elliptical cylinder.

In order to improve the geometrical optics, Ren et al have integrated the wave

property in the ray model and developed the Vectorial Complex Ray Model (VCRM)

[66, 67]. This model permits to take into account the interference and the divergence/

convergence of the wave when it encounters an arbitrarily shaped particle. In this

model, all waves are described by vectorial complex rays and the scattering intensities
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are computed by the superposition of the complex amplitudes of the vectorial rays.

The significant merit of this approach is that the wave properties are integrated in

the ray model, the divergence/convergence of the wave is deduced by the wavefront

equation and the phase shifts due to the focal lines are determined directly by the

curvature of the wavefront.

Diffraction plays a important role in the light scattering. Bohren and Huffman

[4] have formulated the diffraction of a cylinder in the case of plane wave incidence.

Although we found several reference for diffraction of a Gaussian beam by a cylinder

[68, 69], we have not found simple expression for numerical calculation. So the part

of diffraction of the Gaussian beam will not be taken into account in the chapter 4.

Structure of the thesis

The body of the PhD thesis manuscript is organized as follows: The classical theories

and models on the scattering of an infinite cylinder are presented in Chapter 2. They

are used as references for the validation of the models developed in the thesis and

provide fundamental concepts and formulae useful in the chapters which follow. In

Chapter 3, the Vectorial Complex Ray Model (VCRM) is introduced and applied

to the scattering of an infinite cylinder of elliptical section illuminated by a plane

wave perpendicular to the cylinder axis. The propagation direction of the incident

wave can be oblique relative to the axis of the ellipse. VCRM is then extended

in Chapter 4 to the scattering of an elliptical cylinder illuminated by three kinds

of Gaussian beams: two dimensional Gaussian beam, circular Gaussian beam and

astigmatic elliptical Gaussian beam. But in this chapter the direction of the incident

beam is still supposed to be perpendicular to the axis of the cylinder and, for sake

of simplicity, we are interested only the scattering in the plane perpendicular to the

cylinder axis and containing the incident beam axis. In all the scattering process,

the rays remain always in this plane. In Chapter 5, we are trying to study the light

scattering of an elliptical cylinder illuminated diagonally by a plane wave. This is the

first tentative to deal with the 3D ray tracing and the problem of cross polarization.

The last Chapter is dedicated to the conclusions and perspectives of the work.



Chapter 2

Classical methods for light
scattering by a cylinder

In this chapter, the classical theories and models for the scattering of plane wave by

an infinite cylinder will be presented.

The most well-know particle light scattering theory is the Lorenz-Mie theory (LMT

or its equivalents). It is based on the rigorous solution of the Maxwell’s equations,

but only valid for the particles whose shape corresponds to a coordinate system,

such as sphere, spheroid, ellipsoid, circular or elliptical infinite cylinder, where the

mathematical solutions of the differential equations are possible. In this theory, the

incident Ei, internal Eint and scattered electromagnetic fields Es are expanded in

the corresponding special functions (i.e. eigenfunctions). The expansion coefficients

of the incident wave, called beam shaped coefficients, are calculated by the incident

wave expressions, while the expansion coefficients of the scattered field and internal

field are determined by the boundary conditions. Once these coefficients obtained, all

physical quantities can be obtained accordingly. The scattering coefficients in LMT

also can be expanded in Debye series in order to study the contribution of different

order of wave in rigorous regime. Remarkable work has been done for the spherical

particle [70], the infinite circular cylinder at normal [29]or oblique incidence [71]. But

we have not found published work on the scattering of an infinite elliptical cylinder.

Geometrical optics(GO) is, on the other hand, an approximate model to deal

with the interaction of light with an object. It is simple and intuitive, only valid

for the particle of size much larger than the wavelength [3]. In this model, a light

beam is considered as bundles of rays and a ray is characterized by its direction, its

13
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amplitude, its phase and its polarization. When a ray hits the particle surface, it is,

in general, split in a reflected ray and a refracted ray. The directions of these two rays

are governed by the Snell-Descartes laws and their amplitudes are determined using

the Fresnel formulas. The total scattered field in a given direction is, therefore, the

superposition of the complex amplitudes of all emergent rays in that direction.

This chapter is organized in four sections. First, the rigorous theory is presented

and scattering diagrams of a large infinite circular cylinder given. Main profiles char-

acteristics of the scattered intensity can be observed and the role of polarization is

also shown. The geometrical optics for the scattering of an infinite circular cylinder

is described. In this special case, the analytical expressions for the amplitude and the

divergence/convergence factor for all orders can be given as function of the scattering

angle. Finally, a short description is also given to the Generalized Lorenz-Mie theory

and the diffraction method.

2.1 Lorenz-Mie theory for circular cylinder

We consider an infinite circular cylinder illuminated by a plane wave of wavelength

λ. The Cartesian coordinate system (O;xyz) is chosen such that z axis is along the

axis of the cylinder and the incident wave propagating in x direction. (see Fig. 2.1).

The scattering angle θ is the angle between the direction of the scattered wave and

the x axis. The cylinder radius is denoted by a and its refractive index by m. The

refractive index of surrounding medium is 1.

When the incident electric field is polarized parallel to the cylinder axis, it has

only z component, such that

Ei
z = E0e

−ikx (2.1)

where k = 2π/λ is the wave number and E0 the amplitude of the incident field. Since

the exponential function in the above equation can be expanded as the first kind

Bessel functions Jn(kr)

e−ikx =
∞∑
−∞

inJn(kr)e
inθ (2.2)

The incident wave reads therefore as

Ei
z = E0

∞∑
−∞

inJn(kr)e
inθ (2.3)
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Figure 2.1: Schematic of an infinite circular cylinder illuminated by a plane wave
propagating in the x direction. We distinguish two polarizations: perpendicular (1)
and parallel (2) to the scattering plane(i.e. xy) .

Similarly, the scattered and internal electric fields can also be expanded as the

first kind Hankel functions Hn

Es
z(kr) = −E0

∞∑
n=−∞

inbnH
(1)
n (kr)einθ (2.4)

Eint
z (mkr) = E0

∞∑
n=−∞

indnH
(1)
n (mkr)einθ (2.5)

where bn and dn are the scattering and internal field coefficients. The scattered and

the internal magnetic fields can be obtained according to the relation between E and

H [4].

Since the particle under consideration is free of charge and current, the tangen-

tial components of the electric and magnetic fields on the particle surface must be

continuous and satisfy the following boundary conditions:

n̂× (Ei +Es) = n̂×Eint (2.6)

n̂× (H i +Hs) = n̂×H int (2.7)

When the incident electric field is polarized in z direction, the magnetic field is in

the xy plane. So by application of the boundary conditions on the cylinder surface at
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r = a, we obtain

Ei
z + Es

z = Eint
z (2.8)

H i
θ +Hs

θ = H int
θ (2.9)

The scattered and internal field expansion coefficients can be solved from the Eq.

(2.8) and Eq. (2.9)

bn =
mJ ′(mα)Jn(α)− Jn(mα)Jn(mα)J

′
n(α)

mJ ′
n(mα)H

(1)
n (α)− Jn(mα)Jn(mα)H

(1)
n (α)

(2.10)

dn =
1

Jn(mα)
[Jn(α)− bnH

(1)
n (α)] (2.11)

where α = ka is the size parameter. The prime indicates the derivation of the function

to its argument.

When the incident magnetic field is along the cylinder axis, similarly as the perpen-

dicular polarization case describe above, the incident magnetic field can be expressed

as

H i
z = H0e

−ikx = H0

∞∑
−∞

inJn(kr)e
inθ (2.12)

The scattered and internal magnetic fields can be expanded as

Hs
z (kr) = −H0

∞∑
n=−∞

inanH
(1)
n (kr)einθ (2.13)

H int
z (mkr) = H0

∞∑
n=−∞

incnH
(1)
n (mkr)einθ (2.14)

Similarly as for perpendicular polarization case, the scattered and internal electric

fields can be obtained by the relation between E and H .

In this case, the electric field is polarized perpendicularly to the cylinder axis, i.e.

in xy plane (also called parallel polarization because the electric field is always in the

scattering plane).

According to the boundary conditions (2.6) and (2.7), the tangential components

of the electric and the magnetic fields on the particles at r = a satisfy the following

relations

H i
z +Hs

z = H int
z (2.15)

Ei
θ + Es

θ = Eint
θ (2.16)
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So, the scattering and the internal field coefficients are given by

an =
J ′(mα)Jn(α)−mJn(mα)J

′
n(α)

J ′(mα)H
(1)
n (α)−mJn(mα)H

(1)
n (α)

(2.17)

cn =
1

Jn(mα)
[Jn(α)− anH

(1)
n (α)] (2.18)

When kr is very large, the Hankel function tends to

Hn(kr) ∼
(

2

πkr

)1/2

e−ikr+i(2n+1)π/4 (2.19)

Therefore, in far field and for perpendicular polarization, the scattering field in Eq.

(2.4) simplifies to

Es
z(kr) = E0

(
2

πkr

)1/2

e−ikr−i3π/4T1(θ) (2.20)

where,

T1(θ) =
∞∑

n=−∞

bne
inθ = b0 + 2

∞∑
n=1

bn cosnθ (2.21)

is the amplitude function [3]. The scattered intensity in the far field is then given by

I =
2

πkr
|T1(θ)|2I0 (2.22)

Similarly, the amplitude of the scattered field for the parallel polarization can be

written as

T2(θ) =
∞∑

n=−∞

ane
inθ = a0 + 2

∞∑
n=1

an cosnθ (2.23)

The scattered intensity is the same as the perpendicular polarization (Eq. (2.22))

with T1 replaced by T2.

To give a idea about the profile of the scattered diagrams of a infinite cylinder

and provide reference for the study in the near chapters, we show in Fig. 2.2 and Fig.

2.3 the scattering diagrams of circular cylinders with respectively radius 10 µm and

50 µm. The wavelength of the incident plane wave is 0.6328 µm and the refractive

index of particle is 1.33.

We can observe in forward direction that the scattering diagram is rather regular.

This is due to, in term of the geometrical optics, the interference of the reflected and

the first order refracted waves which are dominant compared to the other high orders.

This can be highlighted by the ray model and will be discussed in next section and
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Figure 2.2: Scattering diagrams computed with LMT for an infinite circular cylinder
of refractive index m = 1.33 and radius a = 10 µm illuminated by a plane wave of
wavelength λ = 0.6328 µm.

later in the thesis. The scattering profile in the backward direction is, however, not as

such regular, especially for the particle of 10 µm at perpendicular polarization because

the contributions of different orders change very much as function of scattering angles.

For the particle of 50 µm (Fig. 2.3), we can see two obvious peaks located around

140◦ and 130◦, that are more pronounced for the perpendicular polarization (Fig.
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Figure 2.3: Scattering diagrams computed with LMT for an infinite circular cylinder
of refractive index m = 1.33 and radius a = 50 µm illuminated by a plane wave of
wavelength λ = 0.6328 µm.

2.3(a)) than for the parallel polarization (Fig. 2.3(b)). These are the well known

rainbows of the first and second orders and will be discussed in details by ray model.
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2.2 Generalized Lorenz-Mie theory for cylinder

When a particle is illuminated by an electromagnetic wave or a light beam, if the size

of the particle is much smaller than the variation scale of the wave (both the amplitude

and the phase), the incident wave can be considered as a plane wave and LMT can

be applied. But if it is not the case, LMT is no longer valid and the inhomogeneous

illumination must be considered. Ren et al [35] have developed a so-called plane wave

expansion method for the scattering of a shaped beam by an infinite circular cylinder.

The principle of this method is outlined in the following.

The main idea of the plane wave expansion method is to consider the incident

wave as composition of an infinite number of plane waves propagating in different

directions. For the perpendicular polarization case, for instance, instead of Eq. (2.3),

the incident field is expanded as

Ei
z =

E0

kr

∞∑
n=∞

(−i)neinθ
∫ 1

−1

(kr)2(1− γ2)In(γ)Jn(kr
√

1− γ2)e−iγkzdγ (2.24)

where In(γ) is the beam shape coefficients and γ can be regarded as the cosine of

the incident angle Γ of the plane wave (γ = cos Γ) [35]. So the physical meaning of

Eq. (2.24) is that a shaped beam can be considered as the superposition of plane

waves of propagation direction defined by γ and In(γ). When a incident electric field,

Ei
z(z, r, θ) for example, is given, the beam shape coefficients can be calculated by :

In(γ) =
in

4π(1− γ2)Jn(kr
√
1− γ2)

∫ 2π

0

e−inθ

∫ ∞

−∞

Ei
z(z, r, θ)

E0

eiγkzkdzdθ (2.25)

Evidently, the scattered field and the internal field depend also on the beam shape

coefficients. It has been proved that the scattered field expansion coefficients for a

shaped beam is a linear combination of the beam shape coefficients and the scattering

coefficients. But the scattering coefficients an and bn are independent of the beam

shape coefficients since they are determined only by the properties of the scatterer.

Based on the above method, Ren et al have calculated the scattering diagrams

of an infinite circular cylinder illuminated by a Gaussian beam. But the numerical

calculations remain still a problem because, in the case of shaped beam, the scattering

field is, in general, neither circular nor spherical. The asymptotic relations of the spe-

cial functions can not be used to simplify the calculation in far field. The formulation

of this theory is very tedious and we will not be presented here. For further details

we can refer to the concerned papers [35] and [37].
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2.3 Geometrical optics

In the geometrical optics, all waves are described by bundles of rays. Rays possess

four properties: direction of propagation, amplitude, phase and polarization of the

wave they present.

Fig. 2.4 illustrates the schema of ray when it interacts with a circular cylinder.

When a ray arrives on the surface of the particle, it is partially reflected and refracted.

The direction of the reflected and refracted rays are given by the Snell-Descartes law:

m0 sin θi = m sin θr (2.26)

where θi and θr are respectively the incident angle and the refraction angle. For

convenience we introduce also the complementary angles τ = π
2
− θi τ

′ = π
2
− θr.

m and m0 are respectively the refraction index of the particle and the surrounding

medium. Without lose of generality, we suppose in this thesis that m0 = 1 and m is

the particle relative refractive index.

x

τ
τ

p=1

p=0

m

m

θ

’

θr

p=2

0

y

θi

aReference Ray

o

Figure 2.4: Schema of ray interaction with a circular cylinder.

For an incident ray, there is an infinite series of emergent rays, noted usually by

p, called the order of ray. p = 0 stands for the reflection ray and p = 1 for the first

order refracted ray. When p ≥ 2, p designates an emergent ray undergoes p− 1 times

internal reflections.
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If a ray propagating in direction of x axis and impinges on a cylinder of radius a

(Fig. 2.4), the coordinates of the incident point are given by

x = −a cos θi (2.27)

y = a sin θi (2.28)

According to the law of Snell-Descartes, the refraction angle is given by

θr = arcsin(sin θi/m) (2.29)

Since the angle between the emergent/internal ray and the normal of the the particle

surface (θi/θr) is constant, the total deviation angle of a ray of order p from the x

axis is given by

θ′ = 2τ − 2pτ ′ (2.30)

The scattering of a circular cylinder is symmetric about x axis, the scattering angle

θ is often reported to the interval (0, π) and is related to the total deviation angle by

θ′ = 2kπ + qθ (2.31)

where k is a integer representing the times the emergent ray crosses the x axis. q

takes +1 or −1.

When a pencil of light arrives on the surface of the particle, it can be converged

or diverged and the amplitude of the emergent beam will be more or less important

accordingly. This effect can be counted by energy balance between the incident flux

and the emergent flux. Consider an incident beam of section dA = a sin τdτdz. All

the flux is emergent to an area dAs at a far distance r from the particle such that

dAs = rdθdz. So the relation between the incident intensity I0 and the emerging

intensity I of a ray of order p is given by

I(p, τ) =
ε2I0a sin τdτdz

rdθdz
(2.32)

=
a

r
I0ε

2D (2.33)

where ε is the coefficient related to the reflection on and transmission through the

particle surface determined by the Fresnel formula. We will discuss it later. D is

referenced as the divergence factor with

D =
sin τ

dθ/dτ
(2.34)
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The derivative dθ/dτ is evaluated according to the Eq. (2.30) and Eq. (2.26):

dθ

dτ
= 2− 2p

tan τ

tan τ ′
(2.35)

For low orders, very simple analytical expressions can be obtained for the divergence

factors, p = 0 with for

D0 =
cos θi
2

(2.36)

and for p = 1

D1 =
m cos θr cos θi

2(cos θi −m cos θr)
(2.37)

On the other hand, each time a ray hits the surface of the particle, it is reflected

and refracted. The ratio of the amplitude of the reflected wave to the incident wave

amplitude are given by following Fresnel formulas according to the polarization states:

r1 =
sin τ −m sin τ ′

sin τ +m sin τ ′
(2.38)

r2 =
m sin τ − sin τ ′

m sin τ + sin τ ′
(2.39)

It is worth to point out that the Fresnel coefficients are constants for all order rays

in the circular cylinder. The reflected fractions of the intensity are r21 and r22. The

fraction of the internal reflected are the same as the first reflection, but the sign of

both r1 and r2 are reversed. The refracted parts of intensity are 1−r21 and 1−r22. The
term ε in Eq. (2.33) is then calculated by the Fresnel coefficients. Because ε depends

on the order and the polarization of the ray, so from now it will be noted as εX,p and

given by

εX,p =

{
rX,0 p = 0
(1− r2X,0)(−rX,0)

p−1 p ≥ 1
(2.40)

where rX,0 represents the Fresnel coefficient of reflection. The subscript X = 1 or 2

stands for perpendicular or parallel polarization. Usually, the dimension of the particle

is much smaller than the coherent length of the incident beam, the interference should

be taken into account and therefore the phase of the rays must be counted. The phase

shifts can be classified into three kinds [3]:

1. Phase due to reflection and refraction ϕF : It is well known that the reflected

wave changes of sign compared with the incident wave. When a wave is reflected

on the surface from optically thinner medium (m2 < m1)to optically denser

medium (m2 > m1), there is an addition a half-wave loss. In fact, this is true
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only when the incident angle is small. In more general case, this kind of phase

shift is accounted in the Fresnel coefficients. The half-wave loss is just due to

that ε may change the sign and is in equality that a phase shift π is added

accordingly. In the cases of total reflection or absorbing medium, the Fresnel

coefficients are complex and the phase shift can be deduced from the complex

Fresnel formulae.

2. Phase due to optical path: This type of phase shift is due to the optical path

of a ray, usually compared to a reference ray, which arrives at the center of

the particle in the same direction of the incident ray and emerges in the same

direction as the emergent ray as if there is no particle (no refraction). Therefore,

the optical paths of the reflected ray (p = 0) has a shorter path than the reference

ray, thus it has the positive phase shift. The refraction rays (p = 1, 2, · · · ) have
longer optical path and the phase shifts are negative. Referring to Fig. 2.1, we

can find that the phase shift due to the optical path is

ϕp,PH = 2α(sin τ − pm sin τ ′) (2.41)

3. Phase due to focal lines : When a ray passes through a focus, its phase advances

by π/2. Van de Hulst pointed out two types of phase shifts (type a and type b).

Type a indicates the phase shift due to the crossing of two adjacent rays in the

scattering plane. Type b occurs when a ray crosses the central optical axis. For

the infinite circular cylinder, the rays can not intersected in a plane containing

the axis of the cylinder, so the total phase shift attributed to focal line is

ϕp,FL =
π

2
[p− 1

2
(1− s)] (2.42)

where s is the sign of the divergence factor and q is determined from Eq. (2.31).

By combining the three kinds of phase shifts, the total phase of a ray of order p

is given by

ϕp = ϕF + ϕp,PH + ϕp,FL (2.43)

By comparison of the intensity of GO given in Eq. (2.33) and that of LMT given

in Eq. (2.22), we find that a factor of
√
π/2 must be added so that the amplitude

of GO is consistent with LMT. The amplitude of GO is revised accordingly and the

complex amplitude is therefore given by

SX,p(θ) =

√
παD

2
εX,pe

iϕp (2.44)
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The total field in far region at angle θ is calculated by the summation of the

complex amplitudes of all order rays arriving at the same angle as well as that of the

diffraction:

SX(θ) = Sd(θ) +
∞∑
p=0

SX,p(θ) (2.45)

where Sd(θ) is the amplitude of diffraction which will be discussed in next section.
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Figure 2.5: Scattering diagrams of the same particle as in Fig.2.3.

GO allows to decompose the contribution of different orders of rays and gives

a clear physical picture of mechanism of light scattering. This is one of the most
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Figure 2.6: Scattering diagrams of the same particle as in Fig.2.2.

attractive advantages of GO. Fig. 2.5 shows the contribution of each order of rays as

well as the total scattering phase function.

We can find that the first and the second rainbows, respectively at 137.5◦ and

129.9◦, as well as the Alexander dark region are clearly visible, especially for perpen-

dicular polarization. Compared with the results of LMT, differences in this region are

more significant because wave effects have not been taken into account. This can be
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remedied by Airy theory in the case of circular cylinder.

The scattering diagram of a small particle (a = 10µm) is also given in the Fig. 2.6.

The global profile is very similar as that obtained by LMT, even the detailed structure

near 150◦. But the agreement between GO and LMT is obviously not as good as for

the particle of 50 µm. The first and the second rainbows as well as Alexander dark

region are still clearly observable in Fig. 2.6 but they are not discernable at all for

LMT in Fig. 2.2.

Theoretical explanation of rainbow phenomenon is a very interesting subject and

has been studied as early as 17th century by Snell and Descartes by using the geomet-

rical optics. The refractometry of rainbow is also an important optical measurement

technique. We will give a short description of the rainbow for a circular cylinder.

From the point of view of GO, the rainbow formation of a circular cylinder is the

same as that of a spherical particle, but the amplitude is different.

In the geometrical optics, the rainbow is a phenomenon of emergent ray converged

at an angle such that the intensity tends to infinity. Mathematically, this corresponds

to the convergence factor tends to zero, or

dθ

dτ

∣∣∣∣
p

= 0 (2.46)

By using Eq. (2.29) and Eq. (2.30), we find that the geometrical optics rainbow angle

can be computed by

θrg = 2τrg − 2p arccos
(cos τrg

m

)
(2.47)

with

sin τrg =

√
m2 − 1

p2 − 1
(2.48)

Therefore, the first and the second order rainbows of the rain droplets (m = 1.33) are

located respectively at the 137.5◦ (p = 2) and 129.9◦ (p = 3).

However, when the particle is not a circular cylinder or a sphere, the rainbow

position is much difficult to determine. We will use the new developed ray model

to investigate the rainbow of elliptical cylinder, and in the framework of Vectorial

Complex Ray Model, the determination of rainbow positions for non-circular cylinder

or non-sphere is just a very easy task.



28 Chapter 2. Classical methods for light scattering by a cylinder

2.4 Diffraction

Theoretically, the diffraction effect is important when the scatterer is not very big

compared to the wavelength and the geometrical optics is applicable for large parti-

cle. Therefore, bigger the scatter is, better the result of the geometrical optics and

less diffraction effect. We have seen in the above two sections that the scattering dia-

grams of big particle (a = 50 µm) predicted by GO are in very good agreement with

the rigorous theory – LMT, except in the near forward and around rainbow angles.

Especially, the scattered intensity in forward direction is very important and it takes

about 50% scattered energy.

In the case of an infinite cylinder illuminated by a plane wave, the cylinder can

be considered as an infinite opaque strip. According to the Babinet’s principle, the

diffraction field is the complementary of that for an infinite slit of the same width and

the diffraction patterns of a cylinder and a slit are the same in amplitude but opposite

in phase. The term of 3π/2 should therefore be added for sake of the consistency with

diffracted phase of the cylinder [72]. In the far field, the Fraunhofer diffraction is

considered, so the amplitude is written by [4]

Sd =
1 + cos θ

2

sin(α sin θ)

sin θ
(2.49)

It is worth pointing out that Eq. (8.44) in [4] is the normalized phase function

while Eq. (2.49) is the amplitude which is to be added directly to Eq. (2.45) for

obtaining the total scattered field.

Now we can anticipate the results of comparison between LMT, GO and VCRM

presented in Chapter 3 (Figs. 3.4, 3.5, 3.6 and 3.7) that by adding the diffraction, the

agreement between the LMT and GO is very satisfactory even for a particle as small

as 10 µm. On the other hand, by comparison of Figs. 2.5 and 2.6 we can note that

diffraction plays only an important role in the forward direction.

In the case of shaped beam illumination, we can infer that the profile of the

diffraction contribution should be similar as for the plane wave. The contribution of

diffraction of a shaped beam would be smaller than the plane wave and not symmetric

when the cylinder is off-axis of the beam. Nevertheless, we will not deal with the term

of diffraction in chapter 4 since the accurate calculation should take into account the

Gaussian profile of the incident beam, the beam waist radius and the position of the

cylinder in the beam.
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2.5 Conclusion

In this chapter, we recalled the Lorenz-Mie theory (LMT), the Generalized Lorenz-Mie

theory and the geometrical optics (GO) for the scattering of a circular cylinder. They

will be used in the next chapter to validate our new developed method in the case of

infinite circular cylinder. The basis on GO presented in this chapter is essential for its

extension to the scattering of an infinite elliptical cylinder in the following chapters.

But even theoretically possible, the classical GO is not apt to deal with particles of

shape more complicate, a spheroid with oblique illumination for example [63]. The

Vectorial Complex Ray Model (VCRM) will be applied in the following chapters to

deal with the scattering of an infinite elliptical cylinder illuminated perpendicularly

by a plane wave (Chapter 3) or a Gaussian beam (Chapter 4), and diagonally by a

plane wave (Chapter 5).
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Chapter 3

VCRM for plane wave scattering
by an elliptical cylinder

The geometrical optics is, in principle, very flexible and can be applied to deal with

the interaction of light with any shaped object. But in reality, the things are not so

simple. Though it has been applied largely in the imaging system and no-imaging

(illumination) system design, it is rarely used in quantitative study of particle scat-

tering and optical metrology for non-spherical, non-circular cylindrical particles. It is

very probably due to the three reasons:

1. the tracing of rays in a complex shaped particle: This is always possible in

principle, but the realization is not so easy, especially for 3 dimensional ray

tracing. The use of the vectors simplify considerably the tracing process, has

already done by some researchers.

2. the determination of the divergence or convergence: This is also, in principle,

feasible because we can calculate the convergent center of the rays adjacent

to a given ray. Undoubtedly, this is very tedious and we have not found any

published work reporting or repeating such method.

3. the calculation of the phase due to focal lines: When a bundle of rays cross their

focal line or focal point, the phase of the wave should be advanced π/2 or π

according to van de Hulst [3]. To take into account the interference of all orders

of rays emergent in the same direction, this phase must be counted correctly. It

is a easy task for spherical particle or circular cylinder, for a given incident ray,

the deviation angles of all orders can be obtained analytically and the focal lines

31
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and the focal points can be counted accordingly (see section 2.2 in reference [3]).

But for an irregular particle, the ray direction can only be determined step by

step. The determination of the focal lines or focal points is nearly impossible.

To overcome these difficulties, Ren et al have integrated the wave property in the

ray model and developed the Vectorial Complex Ray Model (VCRM) [66, 67]. This

model permits us to take into account for the interference and the divergence/convergence

of the waves when they encounter the smooth surface of an arbitrarily shaped particle.

In this model, all waves are described by vectorial complex rays and the scattering

intensities are computed by the superposition of the complex amplitudes of the vec-

torial rays. The significant merit of this approach is that the wave properties are

integrated in the ray model, the divergence/convergence of the wave is deduced by

the wavefront equation and the phase shifts due to the focal lines are determined di-

rectly by the curvature of the wavefront. The key point of VCRM is the introduction

of the wave properties in the ray model and the wave structure is described by the

wavefront curvatures in terms of differential geometry. The wavefront equation relates

the wavefronts of the reflected or refracted wave with those of the incident wave and

of dioptric surface. To ease the explanation, we first introduce the general principle

of VCRM and then its formulation for the scattering of an infinite elliptical cylinder.

VCRM is then applied to predict the light scattering of an infinite cylinder of elliptical

cross section illuminated by the plane wave perpendicular to the cylinder axis, but

direction of propagation of the incident wave can be oblique relative to the main axes

of the ellipse.

3.1 Vectorial complex ray model

In this section, the general principle of VCRM for the scattering of any smooth surface

is presented. In VCRM all waves are described by bundles of vectorial complex rays

and each ray is characterized by

• its direction of propagation,

• its polarization,

• its phase,

• its amplitude,
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• its wavefront curvature matrix [66, 73].

The direction of a vectorial complex ray is expressed by its wave vector k. Then

according to the fact that the tangent component of the wave vector is continuous on

the interface of a particle, the Snell-Descartes law is written simply as

k′τ = kτ (3.1)

where k′τ and kτ are respectively the tangent components of the wave vectors k and

k′ of the rays before and after interaction (reflection or refraction) with the surface of

the particle. The normal component of the emergent ray is then given by

k′n =
√
k′2 − k2τ (3.2)

On the other hand, from the mathematical point of view, the structure of any

smooth surface in the vicinity of a given point can be described by a 2 × 2 matrix.

Suppose that the curvature of the surface of the particle in the vicinity of the incident

point of a ray is described by matrix C and the curvatures of the incident and refract-

ed/reflected wave fronts are expressed respectively by the matrix Q and Q′(see Fig.

3.1). Thus the relation between the three curvature matrix is given by the following

wavefront matrix equation [66]

(k′ − k) · nC = k′Θ′TQ′Θ′ − kΘT QΘ (3.3)

where n is the normal of dioptric surface, the superscript T represents the transposed

matrix, the letters with or without the prime represent respectively the values after or

before interaction of the ray with the surface. Θ is the projection matrix between the

base unitary vectors of the coordinates systems on the planes tangent to the wavefront

(s1, s2) and to the dioptric surface (t1, t2)

Θ =

(
s1 · t1 s1 · t2
s2 · t1 s2 · t2

)
(3.4)

In the special case where the rays remain always in a plane containing one of the

principal directions, the curvature matrices described in the two main directions are

diagonal

C =

( 1
ρ1

0

0 1
ρ2

)
(3.5)

Q =

( 1
R1

0

0 1
R2

)
(3.6)

Q′ =

(
1
R′

1
0

0 1
R′

2

)
(3.7)
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Figure 3.1: Schematic of the interaction between the wavefront and surface.

where ρ1 and ρ2 are the two principal curvature radii of the dioptric surface, R1 and R2

the principal curvature radii of the wavefront before interaction, and R′
1, R

′
2 those of

the wavefront after interaction. A example of such case is the scattering of an ellipsoid

in the plane defined by an axis of the ellipsoid and the direction of the incident plane

wave [66, 67]. In this case Eq. (3.3) is simplified as two scalar equations

k′n
2

k′R′
1

=
k2n
kR1

+
k′n − kn
ρ1

(3.8)

k′

R′
2

=
k

R2

+
k′n − kn
ρ2

(3.9)

In the case of reflection, k′n − kn in Eqs. (3.8) and (3.9) are replaced by −2kn.

When a bundle of rays encounter the curved dioptric surface, it will be converged

or diverged and the intensity of the emergent ray will be more or less important

accordingly. In VCRM the divergence factor D is generalized to describe the diver-

gence/convergence of the wave and it is determined directly by the curvature radii of

wavefronts as follows

D =
R′

11R
′
21

R12R22

· R
′
12R

′
22

R13R23

· · ·
R′

1pR
′
2p

(r +R′
1p)(r +R′

2p)
(3.10)

where r is the distance between the origin of the coordinate system and the observation

point. The index p is the order of the ray, p = 0 for reflection and the other for

refracted ray undergone p− 1 times internal reflections. R1j and R2j (j = 1, 2, · · · , p)
represent the two curvature radii of the wavefront of incident ray at jth interaction

with the surface. R′
1j and R′

2j are the corresponding curvature radii of the refracted

ray. For particles of limited dimension (sphere, spheroid, ellipsoid ... ), the term

(r +R′
1p)(r +R′

2p) in Eq. (3.10) tends to r2 in far field and often omitted in the



3.1. Vectorial complex ray model 35

calculation of scattering diagrams. If the particle is infinite in one dimension, as

the infinite cylinder, and the incident beam is also infinite in the same direction one

dimension divergence factor should be considered, as the case of plane wave incidence

as considered in this chapter. But if the cross section of the incident beam is limited

in two directions, such as the circular Gaussian beam or the elliptical Gaussian beam,

two dimension divergence factors should be used. This case will be dealt with in the

next chapter.

Furthermore, in order to take into account the effect of interferences, the phase

should be counted correctly. In general, the phase is composed of four parts:

• Phase of the incident wave,

• Phase due to the reflection or refraction,

• Phase due to the optical path,

• Phase shift due to the focal lines.

The first one is calculated directly by the phase function of the incident electromag-

netic wave expression (see next section for Gaussian beam as a example). The phase

due to the reflection and refraction has already been included in the Fresnel formulae.

Then, it is necessary to count the ray path to evaluate the relevant phase. Finally,

the phase due to the focal line must be deduced from the wavefront curvature at each

stage. If the sign of the curvature changes between two successive interactions, a

phase shift of π/2 is added.

Therefore, the complex amplitude of an emergent ray is calculated by

SX,p =

√
π

2
D |SG| εX,p exp(iϕp) (3.11)

where X = 1 or 2 corresponds respectively to the perpendicular or parallel polariza-

tion, SG the amplitude of the incident wave, ϕp the phase of the pth order ray, εX,p

stands for the relative amplitude of the X polarized ray of order p calculated by the

Fresnel coefficients according to :

εX,p =


rX,0 p = 0

tX,0t
′
X,p

p−1∏
n=1

r′X,n p ≥ 1
(3.12)
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where rX,0 and tX,0 are respectively the Fresnel reflection and refraction coefficients

for a ray impinging the particle surface from surrounding medium, and r′X,n and t′X,n

those coefficients for a ray arriving at the dioptric interface from inside of the particle.

In the case of an elliptical cylinder, the Fresnel coefficients vary on each interaction

of the ray with the particle since the incident angle changes. The total amplitude of

the scattering field at a given angle is just the summation of the complex amplitudes

of all emergent rays :

SX =
∞∑
p=0

SX,p (3.13)

It is worth to point out that the SX defined by Eqs. (3.11) - (3.13) is the amplitude

of the scattered wave and decreases as function of
√
kr in far field when the particle

is illuminated by a very large beam (w0 → ∞). The scattering phase function of a

plane wave is, for example, equal to kr∥SX∥2.

3.2 VCRM for an infinite elliptical cylinder

3.2.1 Ray tracing

Now we consider an infinite elliptical cylinder illuminated by a plane wave of wave-

length λ and choose a Cartesian coordinate system (O; xyz) such that z axis is along

the axis of the elliptical cylinder, x and y axis along the two main axis of the ellipse

in xy plane (see Fig. 3.2). The propagation direction of the incident wave makes an

b

(a)

z

O

y

x
Incident rays

a

y

(b)

θ

O

x

Incident rays

0

Figure 3.2: Schematic of scattering of a plane wave by an infinite elliptical cylinder.
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angle θ0 with x axis. The cross section of the elliptical cylinder is described by

x2

a2
+
y2

b2
= 1 (3.14)

where a and b are respectively the semi-axes of the ellipse in x and y directions. The

normal of the surface at given point (x, y) is calculated by

n =
b2xex + a2yey√
b4x2 + a4y2

= nxex + nyey (3.15)

where ex and ey are respectively the unit vectors in x and y directions, and nx and ny

the components of the normal vector in x and y directions. To simplify the description

we define also a unit vector tangent to the surface by

τ = n× ez = nyex − nxey (3.16)

The curvature radius of the ellipse in xy plane is

ρ1 = a2b2
(
x2

a4
+
y2

b4

)3/2

(3.17)

and the curvature radius of the cylinder surface in the plane containing z axis is infinity

ρ2 = ∞. We deal with only the orthogonal incident case, the rays remain always in

the xy plane and so only one wavefront curvature equation (3.8) is necessary.

When a ray impinges on a circular cylinder, the relation between the refraction

and reflection angles of any order is very simple due to the symmetry of the problem.

In the case of an elliptical cylinder, we have no longer the circular symmetry and the

incident angle of a ray on the surface of the particle changes at each interaction. We

describe now how to trace the ray with wave vector and we will see that ray tracing

procedure is much simplified by using vectors.

When a ray of wave vector k = kxex + kyey arrives at the cylinder surface (from

outside or inside of the cylinder), the components of the wave vector in the normal

and tangent directions can be expressed as

kn = k · n = kxnx + kyny

kτ = k · τ = −kynx + kxny
(3.18)

According to the Snell-Descartes law (3.1), the tangent components are continuous,

so the tangent components of the reflected wave vector klτ and the refracted wave

vector k′τ are equal to that of the incident wave vector klτ = k′τ = kτ . The normal
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components of reflected and refracted wave vectors are then given respectively by

kln = −kn and k′n =
√
k′2 − k2τ . The refracted wave vector k′ and the reflected vector

kl can be finally expressed by

k′ = k′xex + k′yey = k′ττ + k′nn
kl = klxex + klyey = klττ − klnn

(3.19)

For the first incident ray (from outside of the cylinder) the normal vector in the

above takes the opposite direction of n calculated by Eq. (3.15). Once we know the

refracted or internal reflected wave vector, the next incident point is calculated by the

intersection of the wave vector with the ellipse. By repeating this procedure, we can

trace all the rays until they emerge from the particle.

3.2.2 Convergence or divergence factor

When a wave arrives on a curved surface, it is converged or diverged according to

the curvature of the surface and the wavefront curvature of the incident wave. This

convergence or divergence must be to determined to evaluate the amplitude of the

emergent rays and the phase shift due to the focal line. Since the curvature radius

of the cylinder surface in z direction is infinite, only the convergence/divergence of

the wavefront on xy plane is to be considered. The divergence factor defined in Eq.

(3.10) is then simplified to

D =
R′

11

R12

· R
′
12

R13

· · ·
R′

1p

(r +R′
1p)

(3.20)

Now we will show that in the circular cylinder case, this definition is completely

equivalent to the divergence factor in GO Eq. (2.34). In fact, the reflected wave

(p = 0) curvature can be computed from Eq. (3.8)

R′
11 = −a cos θi

2
(3.21)

and the divergence factor is

D =
R′

11

r +R′
11

(3.22)

In the far field, the term of r +R′
11 trends to r. Therefore, the divergence factor for

p = 0 deduces to

D0 =
a cos θi
2r

=
a

r
D0 (3.23)
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Where D0 is the divergence factor in GO given in Eq. (2.36). In the case of refraction

(p = 1), the curvature radius of the first refracted wave also can be calculated by Eq.

(3.8)

R′
11 = − am cos2 θr

m cos θr − cos θi

When the first refracted wave arrives onto the next surface, the curvature of the wave

is R12 = 2a cos θr + R′
11. The curvature radius of the emergent wavefront is finally

given by

R′
12 = a

m cos θr − 2 cos θi
2(m cos θr − cos θi)

cos θi (3.24)

The divergence factor for the refraction p = 1 in far field is hereby

D1 =
R′

11

R12

· R′
12

r +R′
12

=
am cos θr cos θi

2r(cos θi −m cos θr)
=
a

r
D1 (3.25)

D1 defined in GO is given by Eq. (2.37). We find that with a difference of a factor a/r,

the divergence factors in VCRM D0 and D1 are equivalent to the divergence factors

D0 and D1 given in Chapter 2 [Eqs. (2.36) and (2.37)] for circular cylinder as it should

be. But the divergence vector defined in VCRM is very general and the dimension

of the scatterer is included in the factor. For a circular cylinder the dimension of

the particle is well defined by its diameter, while for an arbitrary shaped particle,

the divergence factor depends on the curvature of the particle surface where the ray

interacts with it and this curvature changes at each interaction. So the divergence

factor defined in VCRM reflects well the local curvatures along all the interactions of

the ray with the particle surface.

3.2.3 Phase shift

For an elliptical cylinder, the phase shift due to the optical path ϕp,PH can be directly

calculated by counting the trajectory distance in and out of the particle. The phase

shift due to the reflection or refraction is already included in the Fresnel formulae,

but it must be calculated step by step. For total reflection, the Fresnel formulae are

complex, the phase shift ϕX,T can be calculated separately [74]

ϕ1,T = 2 tan−1

[
(sin2 θi,p − 1/m2)1/2

cos θi,p

]
(3.26)

ϕ2,T = 2 tan−1

[
m2(sin2 θi,p − 1/m2)1/2

cos θi,p

]
(3.27)
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O

R

Focal line

R’

Figure 3.3: Schematic of the change for the curvature radius. O is the center of
wavefront.

where the subscript 1 and 2 present the perpendicular and parallel polarizations re-

spectively.

In VCRM, the phase shifts due to the focal lines ϕp,FL are determined by the

curvature of wavefront. Each time the sign of curvature radius change, in or out

of the cylinder, the phase of the ray advances by π/2. For a cylinder the conver-

gence/divergence occurs only in one direction, so we have only focal lines as shown in

Fig. 3.3, the focal line is perpendicular to the paper sheet. If the convergence in the

two directions occurs at the same point, called focal point, it is counted as two focal

lines, so the phase advances by π.

By counting all the phase shifts, the total phase shift through the interaction of a

ray with the particle is given by

ϕX,p = ϕF (ϕX,T ) + ϕp,PH + ϕp,FL (3.28)

The total phase shift depends also on the phase of incident wave. If the incident wave

does not correspond to a plane wave, the phase of the incident wave varies, therefore,

the phase of the incident wave at the incident point is also to be calculated ans added

to the total phase of the ray given in Eq. (3.28).

3.2.4 Absorption Factor

When the particle is absorbing, the attenuation should be taken into account too. This

can be evaluated by introducing the attenuation factor as function of summating all

ray path lengths in the particle [75] according to

ξ = exp

(
−mi

p∑
q=1

k′n,qdq

)
(3.29)
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where mi is the imaginary part of particle the refractive index. dq denotes the length

that the ray crosses in the particle and k′n,q is the component of the wave vector

normal to the particle surface. It is worth pointing out that the attenuation should

not be calculated with real distance but with the wave number in the particle [75].

Eq. (3.29) has been proved to be equivalent to the formula given by Born et Wolf

[76], Yang et al Yang [58] and Shen [72] [77].

3.2.5 Amplitude of scattered field

The amplitude of the emergent ray of order p corresponding an incident ray is deter-

mined by three factors:

1. the reflection and refraction of the ray on the particle surface, calculated by

Fresnel coefficients;

2. the divergence/convergence of the wave on the curved surface, calculated by the

divergence factor;

3. and the attenuation for an absorbing particle calculated with Eq. (3.29).

The total complex amplitude of the emergent ray of order p, by counting the phase

is therefore given by:

SX,p(θj) = ξεX,p

√
π

2
Deiϕp (3.30)

where εX,p has been mentioned in Eq. (3.12). To be convenient and consistent with

VCRM, the Fresnel formulae are written as function of the normal components of the

wave vectors in and out of the particle (k′n and kn respectively)

r1 =
kn − k′n
kn + k′n

(3.31)

r2 =
m2kn − k′n
m2kn + k′n

(3.32)

t1 =
2kn

kn + k′n
(3.33)

t2 =
2mkn

m2kn + k′n
(3.34)

This type of the Fresnel coefficient is the same as the expression provided in

chapter 2, but it can simplify significantly the calculation, especially for a scattering

of particle in 3D.
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The total intensity is then just the square of the module of the complex amplitude

|SX(θ)|2. However, it is important to note that for a given incident ray, each order

of emergent rays has its proper direction angle determined by the incident position,

the refractive index and the order of the ray. Therefore, if we need the scattered field

at a given angle, the amplitude and phase shift are need to be interpolated. In this

thesis, the Lagrange interpolation is applied to obtain the complex amplitude at a

given angle for each order of emergent rays. All the fields from the different orders

as well as the diffraction (Eq. (2.49)) are summed together to obtain the total field.

The total intensity is obtained by considering the square of total amplitudes.

In the case of circular cylinder, the incident angle, the refraction angle as well as

the Fresnel coefficient remain constant at each interaction of the ray with the particle

surface. The calculation described above can be dramatically simplified and analytical

expressions can be given for the scattering angle, the phase shifts due to the optical

path and the focal lines as well as the divergence factor. These expressions have been

given by classical geometrical optics in the last chapter.

3.3 Numerical Results and discussion

A code has been written in Fortran 95 according to the procedure described above. In

order to present clearly, we give here the main parameters for numerical calculations

in this section. The wavelength of incident wave is λ = 0.6328 µm. The refractive

index of the particle are equal to m = 1.33, except for special mention (Fig. 3.13, Fig.

3.14, Fig. 3.15 and Fig. 3.17). In most cases, we find that the maximum order of

rays pmax = 6 is sufficient since the calculation with higher orders gives very similar

results [78]. So pmax = 6 is chosen for the calculation in this section and the number

of incident rays is 6000 equal distant and the scattering angular grid is ∆θ = 0.01◦.

Since the ray model is only valid for particles of size much greater than the wave-

length, we begin with very large circular cylinders. Fig. 3.4 illustrates the scattering

diagrams of a circular cylinder of refractive index m = 1.33 and radius a = 50 µm

illuminated by a plane wave of wavelength λ = 0.6328 µm calculated by LMT, GO

and VCRM for perpendicular and parallel polarizations. The diffraction is taken into

account in GO and VCRM. We find that the agreement between GO and VCRM is

excellent as expected. In this special case, VCRM is thoroughly equivalent to the

classical GO. The results of GO and VCRM are also in very good agreement with
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that of LMT in all directions except in the Alexander’s dark region and near 90◦ for

parallel polarization. This is the limitation of ray model rather than the numerical

methods.
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(a). Perpendicular polarization.
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Figure 3.4: Comparison of the scattering diagrams computed by LMT, GO and VCRM
for an infinite circular cylinder (m = 1.33, a = 50 µm) illuminated by a plan wave of
wavelength λ = 0.6328 µm. The results of LMT and GO are shifted by 10−2 and 102

respectively for clarity.

In order to show the interference effect, the details of the scattering diagram
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calculated by the three methods are given in the Fig. 3.5. We find that the profiles

of the three curves are in excellent agreement in the near forward direction.
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Figure 3.5: Zoom of the scattering diagrams in near forward direction. The parameters
are the same as in Fig. 3.4.
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Figure 3.6: Same parameters as in Fig 3.4 (a), but particle radius is a = 10µm.

Then we examine the effect of particle size on the precision of ray model by

comparing the scattering diagrams of a circular cylinder of smaller size calculated by

VCRM to those obtained by LMT. Fig. 3.6 shows the scattered intensity by a circular
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Figure 3.7: Same parameters as Fig 3.4 (a), but with the a = 5µm.

cylinder with radius of 10 µm illuminated by a perpendicular polarized plane wave.

The general agreement between LMT and VCRM may be considered as acceptable,

but clearly worse than for the particle of 50 µm of radius. The discrepancy near

rainbow angles and around 90◦ is clearly visible. The difference in the backward

direction becomes also perceivable.

If we decrease further the particle size, as shown in Fig. 3.7 for a cylinder of

5 µm of radius, the difference between the diagrams calculated by VCRM and LMT

becomes more significant, especially for the scattering angle larger than 80◦ where the

profiles of the two curves are still similar but the details are different.

Now we present the scattering diagrams of elliptical cylinder calculated by VCRM.

It should be noted that even many researchers have contributed to the scattering of

elliptical cylinder in the framework of rigorous theory as LMT and GLMT [17, 44, 39,

79] or by numerical simulation as DDA and T-matrix [22], we have not found in the

literature the scattering diagrams available for large elliptical cylinders. Therefore, to

check our code, the scattered intensities of an elliptical cylinder calculated by VCRM

will be compared to those of a long ellipsoid by taking one of the ellipsoid semi-

axes much longer than the two others. The code for the calculation of the scattered

intensity of an ellipsoidal particle is also based on VCRM [66], so it is not a complete

independent method, but its programmation is different and it serves at least as a

check of the code. Furthermore, in VRCM we can follow the trace and the phase of
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each ray and examine its contribution to the amplitude of scattered light.
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Figure 3.8: Comparison of scattering diagrams of an elliptical cylinder (a = 50 µm,
b = 40 µm) and a long ellipsoid (a = 50 µm, b = 40 µm, c = 5 mm) calculated by
VCRM. The refractive index is 1.33. The incident plane wave propagates along x
axis. The scattered intensity of the long ellipsoid is offset by 10−6 for clarity.

The scattering diagrams of a prolate and an oblate cylinder are compared in Figs.

3.8 and 3.9 with an elliptical cylinder and a long ellipsoid. It can be seen clearly that

for two polarizations they are similar in almost all directions. So we can consider
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Figure 3.9: Same parameters as Fig 3.8, but with a = 40 µm, b = 50 µm. The
positions of the first and second rainbows respectively locate at 121.8◦ and 127.0◦.

that our code is validated. On the other hand, we observe from the figures that the

angular distance between the first and the second rainbows for a prolate elliptical

cylinder is 49.57◦, much greater than that of a circular or spherical particle of 7.59◦

(see Fig. 3.4 for example) . While for the oblate elliptical cylinder, only the first

rainbow at 121.79◦ is clearly visible, higher order rainbows are very narrow and week.

The fifth order rainbow, for instance, is observable (at 121.79◦) when the angle step
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in the calculation is small enough. The difference between the two polarizations is

similar as for circular cylinder.
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(b). Parallel polarization.

Figure 3.10: Scattering diagrams of an elliptical cylinder illuminated by a plane wave
at different incident angles. The other parameters are the same as in Fig. 3.8

.

When an elliptical cylinder is illuminated obliquely by an plane wave, i.e. the

incident direction makes an angle with a symmetric axis of the ellipse, due to the

asymmetry, the scattering diagrams are much more complicated and depend greatly
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on the incident angle and the aspect ratio a/b. The scattering diagrams are no longer

symmetric and must be presented for the angles from 0◦ to 360◦.

Fig. 3.10 illustrates the scattering diagrams of an elliptical cylinder illuminated

by a plane wave at different angles. The scattering diagrams for θ0 = 0◦ and θ0 = 90◦

correspond respectively to the cases of the prolate and oblate elliptical cylinders shown

in Figs. 3.8 and 3.9, and therefore they are not given in this figure. It should be noted

that the scattering angle is counted relative to the x axis, so the forward direction

is at θ = θ0 where we find the most important peak. It can be seen clearly from

the Fig. 3.10 that the rainbow positions change with the incident angle and they are

not symmetric to the incident direction. Tab. 3.1 compiles the first and the second

order rainbow positions extracted from Fig. 3.10. The first rainbow angle in one side

(0 < θ1 < 180◦) increases monotonously when the incident angle θ0 increases, while

the first rainbow angle in the other side (180◦ < θ1 < 360◦) increases until 248.0◦ for

θ0 = 60◦ and then decreases. The second order rainbow exists only for small incident

angle util θ0 = 60◦ in one side and θ0 = 20◦ in the other side.
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Figure 3.11: Scattering diagrams of an elliptical cylinder illuminated by a plane wave
for the different aspect ratios. The perpendicular polarization is chosen.

The scattering diagrams of an elliptical cylinder for perpendicular polarization

with aspect ratio as parameter are shown in Fig. 3.11 for θ0 = 0◦. The semi-axis of

the ellipse in x direction is 50 µm, while that in y direction is 50 µm, 45 µm, 40 µm

or 25 µm. It shows that when the aspect ratio a/b increases from 1 to 1.25, the first
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Table 3.1: Rainbow positions of an elliptical cylinder a = 50 µm, b = 40 µm and
m = 1.33 illuminated by a plane wave λ = 0.6328 µm with different incident angles
θ0. θ1 and θ

′
1 are the positions of the primary rainbows, and θ2 and θ

′
2 are the positions

of the second order rainbows.

θ0 θ1 − θ0 θ2 − θ0 θ′1 − θ0 θ′2 − θ0
0 167.9 116.8 192.1 243.2
20 164.4 133.3 221.7 247.2
40 152.3 128.9 244.1 -
60 139.4 118.5 248.0 -
80 127.3 - 242.5 -
90 122.0 - 238.0 -

order rainbow goes to larger angle, the second order rainbow to the smaller angle and

the Alexander region expands. When the aspect ratio is too big, the positions of the

first rainbow (at 119.8◦) and the second order rainbow (at 171.2◦) are reversed.

To show the dependence of the rainbow positions on both the incident angle and

the aspect ratio, Fig. 3.12 depicts the relation of the first rainbow position as function

of the incident angle with aspect ratio as parameter. Only the prolate cylinder (aspect

ratio larger than 1) is shown in the figure since those for an oblate elliptical cylinder

(aspect ratio less than 1) can be deduced directly from this figure. In fact, if we

note the rainbow position of a prolate cylinder of aspect ratio κ = a/b by θr for an

incident angle θ0, then the rainbow angle of an oblate cylinder of aspect ratio 1/κ

with incident angle of 90◦ − θ0 is at 450◦ − θr. For a circular cylinder, the relation

between the incident angle and the primary order rainbow position is linear (black

solid line). For an elliptical cylinder, the relation is no longer linear. When the aspect

ratio increases, the rainbow angle on one side (shown in the high part of Fig. 3.12)

decreases until θ0 = 20◦ and then increases, and on the other side (shown in the lower

part of Fig. 3.12) the rainbow angle increases until θ0 = 60◦ and then decreases. If

the aspect ratio is too small (κ = 0.5) or too big (κ = 2) the rainbow structure is very

different(blue square symbols in Fig. 3.12). For example, when the incident angle is

0, the rainbow positions do not follow the variation as described above but jump to

the other side relative to the rainbow of a circular cylinder. There is only one first

rainbow when the incident angle is between 9◦ and 56◦ but three first rainbow for the

incident angle between 50◦ and 55◦.

The light scattering by an infinite cylinder with refractive index less than unity,

called thereafter bubble cylinder for short, can also be calculated with our code.
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Figure 3.12: Relation of incident angle and the rainbow angle position for different
aspect ratios.
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Figure 3.13: Same parameters as Fig. 3.4, but for the refractive index of particle is
0.75.

Still, we first compare the light scattering diagram of a circular cylinder calculated by

VCRM and by LMT in order to evaluate its precision. Consider a cylinder of refractive

index m = 0.75 and radius a = 50µm illuminated by the plane wave of wavelength

λ = 0.6328µm. The results are shown in Fig. 3.13. We found that agreement is
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very good, even better than for the cylinders of refractive index larger than unity.

Anyway small differences are still observable in the region near 83◦. That is due to

the discontinuity of the derivative of the reflected wave amplitude. In fact, when the

incident angle on the particle surface is smaller than the critical angle of 48.59◦, the

amplitude of the reflected ray varies gradually. Once the incident angle is larger than

the critical angle, the incident energy is totaly reflected and no rays are refracted into

the particle. This difference is expected to be improved by taking into account the

wave effect using Huygens-Fresnel integration. But we will not deal with it in this

thesis [80, 81].
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Figure 3.14: The parameters are the same as in Fig. 3.11 but for the refractive index
of the particle is 0.75. The incident wave is perpendicular polarization.

To analyze the influence of the aspect ratioκ , the scattering diagrams of elliptical

cylinder with κ as parameter are illustrated in the Fig. 3.14. The particle radius is

the same as in Fig. 3.11, but the refractive index is now m = 0.75. We find that,

similar to the spheroidal bubble [78], the scattering diagrams are unsensible to the

aspect ratio of the elliptical cylinder.

Furthermore, we can note that when the particle of refractive index is smaller than

the surrounding medium, no rainbow phenomenon is observed for a circular bubble

cylinder. But for an elliptical bubble cylinder, the rainbows do exist for certain

ellipticities and incident angles. An example is given in Fig. 3.15 to show that the

rainbow can occur in a bubble cylinder. The second rainbows are formed and locate at

146◦ and 158◦. But the amplitude is weak and difficultly detectable in this example.
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Figure 3.15: Total and individual order scattered intensities of an elliptical bubble
cylinder (m = 0.75, a = 50µm, b = 25µm) illuminated by a plane wave of wavelength
λ = 0.6328µm with an incident angle θ0 = 25◦.
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Figure 3.16: The circular cylinder of radius 20µm illuminated by the plane wave of
wavelength λ = 0.6328µm. The refractive index of particle is 1.33 + i0.005.

We have also applied our code to the calculation of the scattering of an absorbing

infinite elliptical cylinder. The scattering diagrams calculated by VCRM and LMT for

an absorbing circular cylinder of radius r = 20µm are compared in Fig. 3.16. It can

be seen that the agreement is good in almost all directions. Note that the rainbows
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are difficult to observe. This is because that for such a large particle, the amplitudes

of emergent rays decrease very rapidly as the order of the rays. This can be evaluated

by Eq. (3.29) knowing that distance between two successive interactions of a ray on

the internal surface of a circular cylinder is

d = 2a sin τ ′

τ ′ for the first and the second rainbows are respectively 49.56◦ and 44.37◦ (according

to Eq. (2.47)). So the attenuation factor between the two interactions is

ξ = exp(−2pmik
′a sin2 τ ′) =

{
0.048 p = 2
0.015 p = 3

That is to say that the intensities of the first the second rainbows are reduced respec-

tively to 4.8% and 1.5% of the rainbows of a transparent cylinder.
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Figure 3.17: Scattering diagram of an elliptical cylinder of semi-axes a = 30µm,b =
20µm illuminated by a plane wave of wavelength λ = 0.6328µm and incident angle
θ0 = 20◦ with refractive index as parameter.

For an elliptical cylinder, it is not easy to evaluate the attenuation factor as for a

circular cylinder and the rainbow structure is also more complicated. Fig. 3.17 shows

the scattering diagram of an absorbing elliptical glass fibre. We can note that the

absorption effect is more important in both sides (mainly for higher orders) than in

the forward (mainly for p = 1) and backward (mainly for p = 2) regions. Nevertheless,

there is a “background” intensity even for a very absorbing particle m = 1.5 + 0.01i,

this is, in fact, the contribution of pure external reflection.
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3.4 Conclusions

In this chapter, Vectorial Complex Ray Model has been applied to the light scattering

of an infinite elliptical cylinder illuminated by a plane wave with arbitrary oblique

incidence relative to the symmetric axes of the elliptical cross. The model and the

code developed have been validated by comparing the results with Mie theory and

the classical GO in the case of circular cylinder. A good agreement is found in almost

all the directions. It is proved that VCRM can predict with precision the light scat-

tering of a cylinder of size as small as some tens of wavelengths, despite existence of

discrepancy in the Alexander’s dark region and near the caustics which is caused by

the limitation of geometrical optics.

To ensure that the code works well for the elliptical cylinder, the results were also

compared with that of a long ellipsoid particle. After the careful validation, our model

has been applied to the study of the scattering diagrams as function of the incident

angle and the aspect ratio of the ellipse. A special attention has been paid to the

rainbow phenomena of an infinite elliptical cylinder. It is found that the scattering

diagram is sensible to both the incident angle and aspect ratio. The structure of

rainbow of a elliptical cylinder is much more complicated than for a circular cylinder

especially when the aspect ratio is important.

Finally, the light scattering of the bubble cylinder (the relative refractive index of

the cylinder to the surrounding medium is less than unity) and the absorbing cylinder

are also calculated by the code. As a curiosity, we have shown that for particular

parameters an elliptical bubble cylinder can produce rainbow like patterns which can

not be observed with circular bubble cylinders.
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Chapter 4

VCRM for scattering of Gaussian
beam by an elliptical cylinder

In the proceeding chapter, VCRM has been applied to the scattering of a plane wave

by an infinite elliptical cylinder. The propagation direction of the plane wave is

perpendicular to the axis of the cylinder but it can make any angle with the main

axes of the ellipse of the cylinder section. This is the most simple case in the light

scattering by irregular particles, and all the scattering properties are independent of

z axis (along the particle axis) and only the divergence of the wave in one direction

is to be considered.

In this chapter we will extend VCRM to the scattering of a shaped beam which

introduce new problems:

• Determination of illumination region: In the plane wave case, the illumination

region is easy to determine, especially for an elliptical cylinder (or a particle

of shape well defined by an analytical expression such as spheroid, ellipsoid,

etc.). But when the incident wave is a shaped beam, the illumination region

can not be determined analytically since the directions of the rays representing

the incident beam vary as function of the position in the beam. This problem

will be dealt with numerically in the framework of VCRM and the details will

be given in Section 4.1.

• Calculation of wavefront curvature: As we have seen in the last chapter, VCRM

allowing accounting for the divergence/convergence of a wave each time a ray

interacts with the particle surface. The curvature of a plane wave is zero, its

radii of curvatures in the two principal directions are therefore infinite. But for

57
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a shaped beam, the curvature of wavefront depends not only on the beam shape

parameters such as the wavelength, the beam waist radius (for two dimensional

Gaussian beam and circular Gaussian beam, or radii for elliptical Gaussian

beam), etc. but also the position of the particle in the beam. So to evaluate

the convergence in each interaction of a ray with the particle surface, we need

to determine the wavefront curvature at the incident point. This can be done

according to the phase function of the beam. To express the curvature in the

particle coordinate system, a transformation of coordinate systems is necessary.

Sections 4.2 and 4.3 will be devoted to the coordinate system transformation and

the wavefront curvature calculation. The methods presented herein are general

and can be applied to any shaped beam.

As examples of the method, three kinds of Gaussian beam will be considered and

the calculation of propagation direction and the curvature radii will be presented in

Section 4.4.

We would note also that different from the scattering of a plane wave, when an

infinite cylinder is illuminated by a shaped beam, even the curvature of the particle in

one direction is zero, the divergence/convergence in two directions must be considered.

This is a conventional procedure in VCRM, so only some important remarks will be

given with numerical results in section 4.5.

4.1 VCRM for scattering of a shaped beam

We consider here the scattering of a shaped beam by an infinite elliptical cylinder,

and more particularly the case where the incident beam axis is perpendicular to the

cylinder. We are interested only in the scattering of the beam in the plane containing

the beam axis. We suppose also that the beam possesses a symmetry so that the rays

remain always in the same plane, such as in the cases of Gaussian beams and Bessel

beams. With these assumptions, one principal direction of the wavefront is always

parallel to the axis of the cylinder axis, while the other changes its direction each time

the ray interacts with the particle surface but it stays in the same plane. We need

therefore only to trace the rays in this plane.

The ray tracing in VCRM is relatively straight forward once we know the position

and the angle of the incident ray. This is simple for a plane wave since the direction

of all the incident rays are the same and is the direction of the wave. The incident
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position can be determined by the analytical solution of the equation of the ellipse and

the line corresponding to the direction of the incident direction. The lit region can

also be determined analytically. For a plane wave of incidence angle θ0 with respect

to x axis, the two limit points A and B between lit region AFB and dark region AGB

are given by (see the two dot lines in Fig. 4.1)

xA = −a2γ20/
√
b2 + γ20a

2 (4.1)

yA = b2/
√
b2 + γ20a

2 (4.2)

xB = −xA (4.3)

yB = −yA (4.4)

where γ0 = tan θ0. It is evident that the two points A and B are symmetric to the

center of the ellipse. We need to trace the incident rays of the x coordinate varying

from xA to xB.

θ
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D B

O 0

Figure 4.1: Illumination by a shaped beam

When the incident wave is a shaped beam, the determination of the incident point

and the lit region are not so easy. Consider a beam as shown in Fig. 4.1 and outlined

with solid lines. The beam axis (dot-dashed line) makes an angle θ0 with respect to

x axis. Note that, to avoid mixing with the lit limit points A and B of plane wave,
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the incident angle for the shaped beam is different from that of the plane wave in the

figure. The two lit limit points are C and D, which are the points corresponding to the

rays tangent to the surface of the particle. These points depend on the beam shape

parameters, as well as its direction and position relative to the particle. In general,

the problem of these points can not be obtained analytically, but relatively easy to

be dealt with numerically. In fact, for a given point on the surface of the particle, we

can calculate the wave vector of the incident beam k and the out going normal of the

particle surface n at that point. If their scalar product q = n ·k is negative, then the

ray impinges on the particle, otherwise, the ray will not counted.

The second problem to be considered in the scattering of a shaped beam by an

elliptical cylinder is the divergence factor. As stated in the section 3.1, in VCRM

the divergences of all waves are described with the wavefront curvature step by step.

Because we are limited in two dimension scattering problem, the wavefront curvature

equation is simplified to two scalar equations (3.8) and (3.9) as stated in chapter 3.

Furthermore, the second curvature radius of the cylinder is infinity, so the two scalar

equations are given by

k′n
2

k′R′
1

=
k2n
kR1

+
k′n − kn
ρ1

(4.5)

k′

R′
2

=
k

R2

(4.6)

where ρ1 is the local curvature radius of ellipse, R1 and R2 the curvature radii of the

wavefront before the refraction/reflection, R′
1 and R

′
2 those after refraction/reflection.

For a shaped beam, the two principal curvature radii of the wavefront can be deter-

mined by its phase function. The calculation of the curvature of a Gaussian beam

will be given in the following subsection.

The divergence factor in VCRM is deduced directly from the curvature radii of the

rays. For the scattering of a plane wave by an infinite cylinder, the wave is converged

or diverged in one direction and can be treated as a two dimensional scattering. But

in the case of shaped beam, the divergence and convergence in two directions must

be counted and the two dimension divergence factor definition (Eq. (3.10)) should be

used.

When an infinite cylinder is illuminated by a plane wave, the scattering is two

dimensional, we have only one term (r +R′
1p) which tends to r in far field and can

be omitted in the calculation of scattering diagram. For the scattering of a shaped

beam by an infinite cylinder, the wavefront curvature radius of the emergent wave in
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horizontal plane (cross section of cylinder) is similar as for the plane wave (Eq. (4.5)),

but that in the vertical plane (infinite direction) is almost the same as the wavefront

curvature radius of the incident beam (see Eq. (3.9)). This curvature radius varies

from some millimeters for strongly focused beam to some kilometers for very large

beam. However, in practical applications, r is in the order of centimeters to meters,

so, in general, R′
1p is not so small to be neglected nor big enough to replace the term

(r +R′
1p) by R

′
1p. The scattered wave is therefore neither cylindrical nor spherical.

The phase shift and the complex amplitude calculations are similar as that de-

scribed in the last chapter. We will deal with in the following sections the specific

problems to the scattering of a shaped beam, i.e. the coordinate system transforma-

tion, the determination of the ray direction and the wavefront curvature radii of a

shaped beam.

4.2 Transformation of coordinate systems

Consider an infinite elliptical cylinder illuminated by a Gaussian beam of waist radius

w0 and wavelength in vacuum λ. We define (OG;uvw) and (O; xyz) as the beam

coordinate system and the particle coordinate system respectively. The relation be-

tween them can be given by a translation and three rotations measured by the three

Euler angles. Starting with the beam coordinate system (OG;uvw) overlapping the

particle coordinate system (O; xyz), we translate first the beam center to (x0, y0, z0),

then rotate around z axis an angle α, around the line of nodes (temporary u axis) an

angle β such that the temporary z axis is in the direction of the beam axis w, and

finally around w axis an angle γ to obtain the coordinate system (OG;uvw). The first

two angles are to define the propagation direction of the beam and the third one is to

determine the polarization. The relation between the two coordinate systems is given

by  u
v
w

 = A

 x− x0
y − y0
z − z0

 (4.7)

The elements of the transformation matrix A

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (4.8)
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Figure 4.2: Geometry of Cartesian coordinates of the beam and the particle

are defined by

a11 = cosα cos γ − cos β sinα sin γ (4.9)

a12 = sinα cos γ + cos β cosα sin γ (4.10)

a13 = sin β sin γ (4.11)

a21 = − cosα sin γ − cos β sinα cos γ (4.12)

a22 = − sinα sin γ + cos β cosα cos γ (4.13)

a23 = sin β cos γ (4.14)

a31 = sinα sin β (4.15)

a32 = − cosα sin β (4.16)

a33 = cos β (4.17)

In the case of an elliptical cylinder illuminated by a shaped beam in xy plane with

an incident angle θ0 relative to the x axis, the three Euler angles are respectively

α = θ0 + 90◦, β = 90◦ and γ = 0 for parallel polarization or 90◦ for perpendicular

polarization (see Fig. 4.2). The matrix A for γ = 0 is simplifies to

A =

 − sin θ0 cos θ0 0
0 0 1

cos θ0 sin θ0 0

 (4.18)
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Then the coordinates of a point in the Gaussian beam after rotation are given by

u = −(x− x0) sin θ0 + (y − y0) cos θ0 (4.19)

v = z (4.20)

w = (x− x0) cos θ0 + (y − y0) sin θ0 (4.21)

The matrix A for the perpendicular polarization (γ = 90◦) is similar. Therefore, when

we know the position of the beam center (x0, y0, z0) and its propagation direction, the

coordinates of a point in the beam coordinates system (u, v, w) can be obtained from

its coordinates in the particle coordinate system (x, y, z).

4.3 Wavefront curvature and propagation direc-

tion

Suppose that the phase function of a beam is expressed in its own coordinate system by

φ(u, v, w). Its isophase surface φ(u, v, w) = C is then given in the particle coordinate

system as an implicit function

F (x, y, z) = φ[u(x, y, z), v(x, y, z), w(x, y, z)]− C (4.22)

Any beam can be considered as bundles of rays, the propagation direction of each

ray is normal to the local wavefront surface of the beam and characterized by the

wave vector k in VCRM. It can be calculated by the gradient of the phase function

of the beam according to

k = k
∇F (x, y, z)

||∇F (x, y, z)||
(4.23)

where the gradient of the phase function is given by

∇F (x, y, z) =
(
F ′
x, F

′
y, F

′
z

)
= (φ′

u, φ
′
v, φ

′
w)A (4.24)

where f ′
ξ denotes the first derivative of function f (F or φ) relative to ξ (x, y, z or

u, v, w). From Eq. (4.7), we find that the derivatives of u, v, w relative to x, y, z are

just the transformation matrix, i.e. ux uy uz
vx vy vy
wx wy wz

 = A (4.25)
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The curvature of the wavefront of a given beam at any point can be described by

its Gaussian curvature κG and the mean curvature κM . According to the differential

geometry, the Gaussian curvature and the mean curvature can be calculated by [82]

κG =
∇F ·H∗(F ) · ∇F T

|∇F |4
(4.26)

κM =
∇F ·H(F ) · ∇F T − |∇F |2Trace(H)

2|∇F |3
(4.27)

where H(F ) is the hessian of the function F and defined by

H(F ) =

 F ′′
xx F ′′

xy F ′′
xz

F ′′
yx F ′′

yy F ′′
yz

F ′′
zx F ′′

zy F ′′
zz

 (4.28)

H∗(F ) stands for the adjoint of the hessian. The notation F ′′
ξη in the above equation

stands for the second derivative of function F relative to its variable ξ and η. By

using the same notation for the phase function φ, the hessian can be expressed as the

second derivatives of the phase function φ relative to its variables (u, v, w)

H(F ) = AT

 φ′′
uu φ′′

uv φ′′
uw

φ′′
vu φ′′

vv φ′′
vw

φ′′
wu φ′′

wv φ′′
ww

A (4.29)

where AT is the transpose of A. Once the Gaussian curvature and the mean curvature

are calculated, the two main curvatures can be obtained by

κ1, κ2 = κM ±
√
κ2M − κG (4.30)

Therefore, the matrix of the incident wavefront Q in its main directions is written by

Q =

(
κ1 0
0 κ2

)
(4.31)

In the case under study in this chapter, one main direction is always in the z direction

(axis of the cylinder) and the other remains in the plane of symmetry, i.e. xy plane.

4.4 Description of Gaussian beams

The procedure described in Sections 4.1-4.3 is general and can be applied to the s-

cattering of any shaped beam. As examples, we apply it to three kinds of Gaussian
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beam: two dimensional Gaussian beam, circular Gaussian beam and astigmatic ellip-

tical Gaussian beam. But we limit ourselves to the two dimensional scattering, i.e.

the beam axis is perpendicular to the axis of the cylinder and we are interested only

in the scattering in the plane perpendicular to the cylinder axis and containing the

incident beam axis.

4.4.1 Two dimensional Gaussian beam

A two dimensional Gaussian beam is a beam with an infinite extension in one direction

and a Gaussian profile of amplitude (or intensity) in the other direction. It can be

obtained by focusing a plane wave with a cylindrical lens.

Consider now a two dimensional Gaussian beam propagating in w direction with a

Gaussian amplitude profile in u direction. Then the complex amplitude of its electric

field SG can be expressed in its own coordinate system (OG;uvw) by [83, 84]

SG(u, v, w) = AG exp(iφ)

where AG and φ present respectively the amplitude and the phase of the beam with

AG =
w0

wl

exp

(
− u2

w2
l

)
(4.32)

and

φ(u, v, w) = −k
{
w +

u2

2w[1 + (l/w)2]

}
+ tan−1

(w
l

)
(4.33)

where k is the wave number and l is the Rayleigh length, defined by

l = πw2
0/λ (4.34)

wl is the local radius at w and is related to the beam waist radius w0 by

wl = w0[1 + (w/l)2]1/2 (4.35)

As mentioned earlier, we know that the propagation direction of the wave at any

point in the beam, represented by a ray and characterized by its wave vector, can

be determined by the derivatives of the phase function φ of the beam, whereas the

curvature radii of the wavefront can be calculated by the second derivatives of the

phase function.
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From Eq. (4.33) we obtain the first and the second derivatives of a two dimensional

Gaussian beam as

φ′
u = −k uw

l2 + w2
(4.36)

φ′
v = 0 (4.37)

φ′
w = −k − k

u2(l2 − w2)

2(l2 + w2)2
+

l

l2 + w2
(4.38)

and

φ′′
vv = 0 (4.39)

φ′′
uv = φ′′

vu = 0 (4.40)

φ′′
vw = φ′′

wv = 0 (4.41)

φ′′
uu = − kw

l2 + w2
(4.42)

φ′′
uw = φ′′

wu = −ku(l
2 − w2)

(l2 + w2)2
(4.43)

φ′′
ww = −kwu

2(3l2 − w2)

(l2 + w2)3
− 2lw

(l2 + w2)2
(4.44)

Then the wave vector, the Gaussian and the mean curvatures of the wavefront can be

calculated by Eqs. (4.23), (4.26) and (4.27).

For the case under study in this chapter, the transformation matrix is given by Eq.

(4.8). We can show, as expected, that the z component of the wave vector k in the

plane z = 0 is zero and one of the main curvature for the Gaussian beam wavefront

is zero. In fact, the gradient of the isophase function is

∇F (x, y, z) = (f1, f2, 0) (4.45)

where f1 = − sin θ0φ
′
u + cos θ0φ

′
w and f2 = cos θ0φ

′
u + sin θ0φ

′
w. The wave vector is

therefore given by (Eq. (4.23)):

k =

(
k

f1√
f 2
1 + f 2

2

, k
f2√

f 2
1 + f 2

2

, 0

)
(4.46)

The hessian H(F ) and its adjoint H∗(F ) of the two dimensional Gaussian beam

are given by

H(F ) =

 h11 h12 0
h21 h22 0
0 0 0

 (4.47)
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where,

h11 = sin θ0(sin θ0φ
′′
uu − cos θ0φ

′′
wu) + cos θ0(cos θ0φ

′′
ww − sin θ0φ

′′
uw) (4.48)

h12 = cos θ0(− sin θ0φ
′′
uu + cos θ0φ

′′
wu) + sin θ0(cos θ0φ

′′
ww − sin θ0φ

′′
uw) (4.49)

h21 = sin θ0(sin θ0φ
′′
uw − cos θ0φ

′′
ww) + cos θ0(cos θ0φ

′′
uw + sin θ0φ

′′
ww) (4.50)

h22 = cos θ0(cos θ0φ
′′
uu + cos θ0φ

′′
wu) + sin θ0(cos θ0φ

′′
uw + sin θ0φ

′′
ww) (4.51)

and

H∗(F ) =

 0 0 0
0 0 0
0 0 h11h22 − h21h12

 (4.52)

By introducing ∇F (x, y, z), H(F ) and H∗(F ) given above into Eq. (4.26), we can

conclude that the Gaussian curvature of two dimensional Gaussian beam is hereby

equal to zero. That reveals one of the principal curvature radius tends to the infinity.

4.4.2 Circular Gaussian beam

Then we consider the circular Gaussian beam which is a beam of circular section with

a Gaussian amplitude profile. Suppose that its propagation direction is still in w

direction and the beam waist radius is w0, then the complex amplitude of its electric

field SG and the phase function are given in its own coordinate system (OG;uvw) by

[62]

SG(u, v, w) =
w0

wl

exp

(
−u

2 + v2

w2
l

)
exp(iφ) (4.53)

φ(u, v, w) = −k
{
w +

u2 + v2

2w[1 + (l/w)2]

}
+ tan−1

(w
l

)
(4.54)

where the Rayleigh length l = πw2
0/λ and the local beam radius wl = w0[1+(w/l)2]1/2

are the same as for the two Gaussian beam.

The first derivatives of the phase function (Eq. (4.54)) are given by

φ′
u = −k uw

l2 + w2
(4.55)

φ′
v = −k vw

l2 + w2
(4.56)

φ′
w = −k − k

(u2 + v2)(l2 − w2)

2(l2 + w2)2
+

l

l2 + w2
(4.57)
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The second derivatives are

φ′′
uu = φ′′

vv = − kw

l2 + w2
(4.58)

φ′′
uv = φ′′

vu = 0 (4.59)

φ′′
uw = φ′′

wu = −ku(l
2 − w2)

(l2 + w2)2
(4.60)

φ′′
vw = φ′′

wv = −kv(l
2 − w2)

(l2 + w2)2
(4.61)

φ′′
ww = −kw(u

2 + v2)(3l2 − w2)

(l2 + w2)3
− 2lw

(l2 + w2)2
(4.62)

Since the circular Gaussian beam is symmetric about u and v, the two principal

curvature on w axis are the same, so we have κG = κ2M . We will not give the

demonstration here because the analytical calculation is very tedious. Our numerical

expressions have confirmed well this conclusion.

4.4.3 Astigmatic elliptical Gaussian beam

The laser sheet is a kind of shaped beam widely used in optical metrology, such

as the Particle Imaging Velocimetry (PIV). It is in fact a Gaussian beam with an

elliptical section, i.e. the beam waist radii in the two directions are different and

they can locate at different positions along the propagation direction, so it is really

an astigmatic elliptical Gaussian beam. Such beam can be obtained from a circular

Gaussian beam by focusing it in one direction with a cylindrical lens.

Consider an astigmatic elliptical Gaussian beam propagating along w axis with

the two beam waist radii w0u and w0v and polarized in u direction. Its electric field

in the first order approximation (Davis’ model) is given in its own beam coordinate

system (OG;uvw) by [85, 83]

E = E0ψ
sh
0

(
eu −

Quu

lu
ew

)
exp (−ikw) (4.63)

where

ψsh
0 = i

√
QuQv exp

[
−iQu

u2

w2
0u

− iQv
v2

w2
0v

]
(4.64)

Qu =
1

−i+ (w − wdu)/lu
(4.65)

Qv =
1

−i+ (w − wdv)/lv
(4.66)
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In the paraxial approximation, the electric field component in v direction can be

neglected and the complex amplitude of the electric field SG can be expressed by

SG(u, v, w) = |SG| exp(iφ) (4.67)

where |SG| and φ present the amplitude and the phase of the beam and are given by

|SG| =
√
w0u

wu

√
w0v

wv

exp

(
− u2

w2
u

− v2

w2
v

)
(4.68)

and

φ(u, v, w) = −k
{
w +

u2

2Ru

+
v2

2Rv

}
+

1

2
tan−1

(
w − wdu

lu

)
+

1

2
tan−1

(
w − wdv

lv

)
(4.69)

where

wu = w0u

√
1 +

(w − wdu)2

l2u
(4.70)

wv = w0v

√
1 +

(w − wdv)2

l2v
(4.71)

Ru = (w − wdu)[1 +
l2u

(w − wdu)2
] (4.72)

Rv = (w − wdv)[1 +
l2v

(w − wdv)2
] (4.73)

lu =
π

λ
w2

0u (4.74)

lv =
π

λ
w2

0v (4.75)

wdu and wdv are respectively the coordinates of the beam waists in u and v directions.

The first and second derivatives of the phase function are given by

φ′
u =− ku

Ru

φ′
v =− kv

Rv

φ′
w =− k − 1

2
ku2

l2u − (w − wdu)
2

[(w − wdu)2 + l2u]
2
− 1

2
kv2

l2v − (w − wdv)
2

[(w − wdv)2 + l2v]
2

+
1

2

lu
l2u + (w − wdu)2

+
1

2

lv
l2v + (w − wdv)2

(4.76)
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and

φ′′
uu =− k

Ru

φ′′
vv =− k

RV

φ′′
uv =ϕ

′′
vu = 0

φ′′
uw =ϕ′′

wu = −ku[l
2
u − (w − wdu)

2]

[(w − wdu)2 + l2u]
2

φ′′
vw =ϕ′′

wv = −kv[l
2
v − (w − wdv)

2]

[(w − wdv)2 + l2v]
2

φ′′
ww =

ku2[3l2u − (w − wdu)
2]

Ru[(w − wdu)2 + l2u]
2
+
kv2[3l2v − (w − wdv)

2]

Rv[(w − wdv)2 + l2v]
2

− lu
Ru[l2u + (w − wdu)2]

− lv
Rv[l2v + (w − wdv)2]

(4.77)

Evidently, the two kinds of Gaussian beam discussed in the previous sections are

the special cases of the astigmatic elliptical Gaussian beam. So the scattering of a

two dimensional Gaussian beam can be considered as an astigmatic elliptical Gaussian

beam with wdu = wdv = 0, w0u = w0 and w0v = ∞ and the scattering of a circular

Gaussian beam is the special case for wdu = wdv = 0, w0u = w0v = w0. Working in the

special case permits to simplify the problem and to isolate different effects. And the

results are useful for the validation of the general case. In the following section, we

will present the numerical results calculated with three independent codes developed

for the scattering of three kinds of Gaussian beam.

4.5 Numerical results and discussion

On the basis of the theories presented above, three codes have been written in Fortran

95. Since there is very few results in the literature for the scattering of large non-

circular cylinder, the validation of our method is mainly based on the examination of

the physical phenomena, such as the rainbow positions, the rainbow structures, the

focusing of the beam by the particle.

Anyway, two “validations” with “independent” results are given. The first is the

scattering of a two dimensional Gaussian beam by a fused silica capillary given by

Krattiger et al [65]. Their results have been validated by experiment. The second is

the comparison with the numerical results of a long ellipsoid particle calculated also
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with VCRM. The first is partial since only the orders p = 0 and p = 1 are considered.

The second is not really independent since it is based on the same model. The lack

of the results in the literature proves in certain sense the necessity and the difficulty

of the problem we are dealing with.

To simplify the presentation, we give at this stage the main parameters used for

the calculation in this section. The wavelength of the incident beam and the refractive

index of the particle are supposed constant and equal to λ = 0.6328 µm and m = 1.33

respectively except for Fig. 4.3. The number and order of rays as well as the scattering

angular grid are chose as same as in the case of plane wave ( see Section. 3.3).

4.5.1 Two dimensional Gaussian beam

In all shaped beams, the two dimensional Gaussian beam is the simplest so we start

with this case. It is worth to point out that in far field the scattered wave of a two

dimensional Gaussian beam is cylindrical (independent of z), the scattering diagrams

given in this subsection are the phase function. However, the scattered fields of

a circular Gaussian beam and an elliptical Gaussian beam are, in general, neither

cylindrical nor spherical, there is not a simple relation between the scattered intensity

and observation distance, so the scattering diagrams will be in the intensity at a given

distance in the next two subsections.

To validate our theory and code, a capillary is chosen to compare with Fig. 6 in

the reference [65] (copied in Fig. 4.3(a)) by setting the same parameters. It should

be pointed out that the refractive index of the core (m = 1.332) is smaller than that

of the capillary wall (m0 = 1.457). The beam waist radius is w0 = 8.4 µm and its

center locates at y0 = 48 µm in the y direction. As we found that our results (Fig.

4.3(b)) are in good agreement with that in the reference [65] (copied in Fig. 4.3(a)),

we conclude that our code is validated.

We have examined the rainbow positions as function of the ellipticity of the cylin-

der when it is illuminated by the plane wave in last chapter. But when an elliptical

cylinder is illuminated by a two dimensional Gaussian beam, the tracing of the rays

are the same. Although the incident angle of the rays on the particle can be differ-

ent from the propagation direction of the beam, the rainbow positions for Gaussian

beam are almost the same as that of plane wave, but their relative intensity varies

as function of the beam waist radius and the position of the particle. Fig. 4.4 shows
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(a). Fig. 6 in the reference [65].
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(b). Our results calculated with VCRM.

Figure 4.3: Scattering diagram of a fused silica capillary of radius a = 50µm filled with
water m = 1.332, illuminated by a Gaussian beam with waist radius w0 = 8.4µm and
offset 48µm in y direction. The refractive index of the capillary wall is m0 = 1.457,
so is greater than the core(water).

the scattering diagrams of a two dimensional Gaussian beam (w0 = 30 µm) by an

elliptical cylinder of major axis a = 50 µm with aspect ratio as parameter. The beam

center is on the axis of the cylinder. It is shown that the rainbow positions are similar



4.5. Numerical results and discussion 73

0 30 60 90 120 150 180
Scattering angle [deg]

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

|S
1|2

a/b =1.0

a/b =1.11

a/b =1.25

a/b =2.0

Figure 4.4: Scattering diagrams of an elliptical cylinder illuminated by a Gaussian
beam w0 = 30 µm with aspect ratio as parameter. The major axis is 50 µm, the
minor axis are 50 µm, 45 µm, 40 µm and 25 µm. The polarization is in xz plane. The
results for κ = 1.11, κ = 1.25 and κ = 2 are offset by 102, 104 and 106 for clarity.
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Figure 4.5: Scattering diagrams of an elliptical cylinder a = 50 µm and b = 40 µm
illuminated by a Gaussian beam (w0 = 25 µm) at different angles. The results for
θ0 = 40◦, θ0 = 60◦ and θ0 = 80◦ are shifted by 102, 104 and 106 for clarity.

to the plane wave case (Fig. 3.11 in chapter 3) but the amplitudes of the first and

the second rainbows are less important. By comparison of the scattering diagrams of

a plane wave (Fig. 3.10 (a) in chapter 3) with that of a two dimensional Gaussian
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beam (Fig. 4.5), we find that when the particle is illuminated by a two dimension-

al Gaussian beam of waist radius smaller the particle radius at different angles, i.e.

the incident beam axis remains in xy plane but makes an angle θ0 with x axis, the

scattered intensities are focused more in forward direction.
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Figure 4.6: Scattered diagrams of a circular cylinder of radius 30 µm illuminated by
a plane wave and Gaussian beam of waist radius (w0 = 80, 20, 10 µm). The center
of the Gaussian beam is located on the axis of the cylinder. The incident beam is
polarized in z direction.

We then compared the scattering diagrams of an infinite circular cylinder of radius

a = 30 µm illuminated by a plane wave and a two dimensional Gaussian beam of three

waist radii 80 µm, 20 µm and 10 µm. We can see from Fig. 4.6 that the scattering

diagram of a two dimensional Gaussian beam with large waist radius (w0 = 80 µm)

tends to that of a plane wave. This means that when the beam waist radius of a two

dimensional Gaussian beam is about three time s larger than the particle radius, the

scattering in the plane containing the beam can be considered as the scattering of a

plane wave. When the beam waist radius decreases, the general scattered intensities

decreases accordingly. With a two dimensional Gaussian beam is strongly focused

(w0 = 10µm for example), the scattered intensity at sides (around 90◦) reduces dra-

matically while it remains almost the same in forward and backward directions.

Fig. 4.7 shows the scattering diagrams of an elliptical cylinder at oblique incidence

with a two dimensional Gaussian beam of different waist radius. The two semi-axes of

the elliptical cylinder are respectively a = 50 µm and b = 40 µm and the incident wave
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Figure 4.7: Scattered diagrams of an elliptical cylinder of major radius a = 50 µm and
minor radius b = 40 µm illuminated by plane wave and a two dimensional Gaussian
beam of three different waist radius (w0 = 100, 25, 15 µm). The incident beam is
polarized along z direction and makes an angle θ0 = 20◦ with x axis. The center of
the beam is located on the axis of the cylinder.

is the plane wave or a two dimensional Gaussian beam of waist radius w0 = 100 µm,

25 µm or 15 µm. We remark that the profile of the scattering diagrams are very

different from those of the circular cylinder. The scattering diagrams are no longer

symmetric, so they must be given in all directions (0 to 360◦). The rainbow angles

and the Alexander dark regions in the two sides of the scattering diagram (0◦ to 180◦

and 180◦ to 360◦) are not symmetric neither. This has been discussed in last chapter

in the case of plane wave. When a cylinder is illuminated by a two dimensional

Gaussian beam of waist radius relatively small, the incident beam intensity at the

impact position for rainbow is weak. For example, in the cases w0 = 15 µm, the

rainbow phenomena are not visible in two sides relative to the incident direction (20

to 200◦ and 200◦ to 20◦). If w0 = 25 µm the rainbow is much visible in the side of

scattering angle smaller than 200◦ than in other side.

4.5.2 Circular Gaussian beam

In this subsection, the scattering of a circular Gaussian beam by circular/elliptical

cylinders are discussed. The scattering properties as a function of the beam position
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and orientation, the beam waist as well as the observation distance will be examined.
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Figure 4.8: Scattered intensities of a circular cylinder of radius 30 µm illuminated by
the plane wave and a Gaussian beam of waist radius (w0 = 80, 20, 10 µm). The center
of the Gaussian beam is located on the axis of the cylinder. The incident beam is
polarized in z direction.

The scattering intensity of an infinite circular cylinder with the same parameters

as in Fig. 4.6 are compared firstly. The profile of the scattered intensity in Fig. 4.8 is

very similar to Fig. 4.6. But for the waist radius w0 = 20 µm, the scattered intensities

in the forward and backward directions are more important than that for the plane

wave and the Gaussian beam of w0 = 80 µm and 10 µm. This is due to the focusing of

the incident wave. This effect can be explained by the wavefront equation (Eq. (4.6)).

In fact, the wavefront radius in xz plane of the Gaussian beam of w0 = 20 µm at the

incident point x = −a, y = 0 is 131.145 mm, that of the wave just transmitted in the

particle is 174.782 mm according to Eq. (4.6) and the wavefront radius of the emergent

wave of the first order (p = 1) is equal to 131.370 mm. So the emergent wave is focused

near the observation distance (0.1 m) in the forward direction. The transformation

of the wavefront curvature in the other direction (xy plane) can be evaluated by Eq.

(4.5) and we find that the wavefront radius of the emergent ray (p = 1) is very small

(about 30 µm). Similar calculation can be done for other Gaussian beams. With the

same procedure, we find that the focal distance of the beam w0 = 80 µm is 33.6 m and
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that of the beam w0 = 10 µm is at about 8 mm. Therefore the scattered intensity at

0.1m in the forward direction for the Gaussian beam w0 = 20 µm are much stronger

than the other beams . The fact of the scattering intensity in backward direction for

w0 = 20 µm is stronger than the others can also be explained with the same principle.
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Figure 4.9: Scattering intensities at different observation distances of an circular cylin-
der of radius 30 µm illuminated by a Gaussian beam of waist radius w0 = 20 µm.
The center of the Gaussian beam is on the axis of the cylinder. The incident beam is
polarized in xz plane.

To confirm the above reasoning, we examine now the variation of scattered intensi-

ties as function of the observation distance. Fig. 4.9 illustrates the scattering intensity

observed at different distance from a circular cylinder illuminated by a Gaussian beam.

The radius of the cylinder is 30 µm and the Gaussian beam radius is w0 = 20 µm.

We find that the scattered intensities at 1 m is about 100 times greater than that at

10 m, i.e. the scattered field is almost spherical. Note that the scattered intensity at

0.131 m is 10,000 times more important than that at 1 m in forward direction, but

the mean intensity is not more than 10 times around 60◦. This is due to the focusing

of the incident wave in the longitudinal direction of the cylinder, an effect already

discussed for Fig. 4.8. Furthermore, we can also observe that the scattered intensity

at 0.14 m has several peaks. In fact, all these peaks are different orders of the same

incident ray due to the focusing of the incident wavefront arrived at y = 10 µm in our
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case. The corresponding incident angle and refraction angle on the particle surface are

respectively about 20◦ and 15◦. The scattering angles are respectively 140◦, 10◦, 160◦,

50◦ and 100◦ for the emergent rays at order p from 0 to 4. The scatted intensity will

decrease when the observation distance is smaller than the focal distance, such that

the intensity at 0.05 m is weaker than at 0.13 m and 0.14 m. This effect of focusing

depends on the beam waist radius, the position of the particle in the beam and the

size of the particle. These results confirm that the scattered field of a Gaussian beam

by an infinite cylinder is, in general, neither cylindrical nor spherical.

Since the measurement distance is usually in the order of tens od centimeters, all

the observation distances are fixed to 0.1 m In the following.
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Figure 4.10: Scattered intensities of an elliptical cylinder illuminated by the Gaussian
beam w0 = 30 µm with aspect ratio as parameter. The major axis is 50 µm, the
minor axis is 50 µm, 45 µm, 40 µm or 25 µm. The polarization is in xz plane. The
results for κ = 1.11, κ = 1.25 and κ = 2 are offset by 102, 104 and 106 for clarity.

We have discussed the scattering of an elliptical cylinder at different aspect ratios

illuminated by a two dimensional Gaussian beam at different incident angles in the

last subsection. When the elliptical cylinders are illuminated by a circular Gaussian

beam, the tracing of the rays is almost the same as for two dimensional Gaussian

beam and the profile of the scattered intensity predicted by VCRM is also similar.

This can be approved by comparing Fig. 4.4 with Fig. 4.10. Due to its similarity with

the problem of the scattering of a two dimensional Gaussian beam, the scattering of

a circular Gaussian beam by an elliptical cylinder at different incident angles will not
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given here.
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Figure 4.11: Scattered intensities of an elliptical cylinder of major radius a = 50 µm
and minor radius b = 40 µm illuminated by the plane wave and a Gaussian beam of
three different waist radius (w0 = 100, 25, 15 µm). The incident beam is polarized
along z direction and makes an angle θ0 = 20◦ with x axis. The center of the beam is
located on the axis of the cylinder.

Fig. 4.11 shows the scattered intensity of an elliptical cylinder at oblique inci-

dence. The parameter are the same as in Fig. 4.7. We can also observe the similar

phenomenon of focusing discussed for Fig. 4.8. Still according to the Eq. (4.6), the

position of the focal spot for the beam of waist radius 25 µm is located at approxi-

mate 0.2 m. The scattered intensity at the observation distance of 0.1 m is still more

important than the other beams. Moreover, the intensity for w0 = 15 µm is obviously

lower than that for w0 = 100 µm and also plane wave. That is because the total

power of the incident beam is smaller since we assume always that the amplitude of

the electric field at the center of beam is unity.

When a narrow Gaussian beam illuminates a very deformed elliptical cylinder, we

can observe the separation of scattering orders and total reflection even for a cylinder

of refractive index larger than unity. Fig. 4.12 shows the scattering diagrams of an

elliptical cylinder of two semi-axes a = 30 µm, b = 12 µm illuminated by a Gaussian

beam (w0 = 5 µm). When the incident beam makes a small angle with the major axis

of the elliptical cylinder the scattered waves of different orders interfered (θ0 = 10◦).
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Figure 4.12: Scattered intensities of an elliptical cylinder (a = 30 µm, b = 12 µm)
illuminated by a Gaussian beam (w0 = 5 µm) at different incident angles.

Reference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axis

Figure 4.13: Ray tracing for the incident angle θ0 = 10◦ in the Fig. 4.12.

When the incident angle is relatively large, θ0 = 30◦ for example, the scattered wave

of different orders begin to separate: p = 1 in 25◦, p = 3 in 100◦ with rainbow at

105◦, p = 4 in 205◦, but p = 0 and 2 interfere around 320◦. The scattered waves of

different orders become more and more separated when the incident angle increases.

When θ0 = 60◦, the orders p = 1 at 60◦ and p = 3 at 90◦, p = 4 at 245◦ are well

separated, while p = 0 and p = 2 still interfere around 290◦. When we increase further

the incident angle to near perpendicular to major axis, the deviation of the beam is
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small such that the orders 1 and 3 are almost at the same angle and so do p = 0, 2

and 4. We can remark that the scattered intensity in forward direction for θ0 = 10◦

is much less than that for other incident angles. This is due to the total reflection of

the rays near the axis of the incident beam (see Fig. 4.13).
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Figure 4.14: Scattered intensities of an elliptical cylinder (a = 50 µm, b = 40 µm)
illuminated by a Gaussian beam (w0 = 25 µm, z0 = x0 = 0) parallel to x axis with y0
as parameter. The results of y0 = 25 µm, 40 µm and 55 µm are offset by 10−2, 10−4

and 10−6 for clarity.
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Figure 4.15: Ray tracing for the center of Gaussian beam locate at y0 = 55 µm, a
case shown in Fig. 4.14.
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We show the scattered intensities in Fig. 4.14 when the incident Gaussian beam

shifts in y direction. Evidently, when the beam center is on the axis of the cylinder,

the scattering diagram is symmetric. When the beam is shifted from the major axis of

the cylinder, the intensities are concentred in several zones corresponding to different

orders. For example, there are three main zones well separated when the beam is

55µm off-axis. This phenomenon is very clearly shown in Fig. 4.15: p = 0 in 0◦−60◦,

p = 1 in 310◦ − 350◦, p = 2 around 180◦ and p = 3 around 110◦.

4.5.3 Astigmatic elliptical Gaussian beam

In this subsection, the scattering of an astigmatic elliptical Gaussian beam is discussed.

We will investigate the influence of the waist radii and the positions of the astigmatic

elliptical Gaussian beam in two directions on the scattered intensities. We recall that

the observation distance is fixed to 0.1m in this subsection, the polarization of the

incident wave is along the axis of the cylinder, v axis in the beam coordinate system

is parallel to z axis of the particle coordinate system, and the center of the beam is

located on the axis of the cylinder except for Fig. 4.19.
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Figure 4.16: Same particle as in Fig. 4.8, but the incident beam is a two dimensional
Gaussian beam of waist radius 20µm or an astigmatic elliptical Gaussian beam of
waist radii w0u = 20µm and w0v = 2000µm in the u and v directions respectively.

Fig. 4.16 compares the scattering diagram of a circular cylinder of radius 30µm
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and the refractive index 1.33 illuminated by a two dimensional Gaussian beam of waist

radii 20µm and an astigmatic elliptical Gaussian beam of waist radius w0u = 20µm

and w0v = 2000µm in u and v directions respectively. An excellent agreement is found

in all directions as expected. That is because when the curvature radius of the beam

in v direction is much larger than the waist radius in u direction and also much larger

than the particle radius, the astigmatic elliptical Gaussian beam can be considered as

a two dimensional Gaussian beam.
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Figure 4.17: Same parameters as in Fig. 4.8, except for the waist radii of the beam.

Then Fig. 4.17 illustrates the scattered intensity by a circular cylinder of radius

a = 30µm illuminated by a Gaussian beam with the waist radius as parameters. We

find that the scattered intensity for w0u = 20µm and w0v = 20µm is higher than

that for w0u = 200µm, w0v = 200µm (considered as plane wave) in the forward and

backward directions. That is attributed to the focusing effect discussed in the previous

subsection, but note that the intensity is lower elsewhere the scattered intensity for the

beam w0u = 20µm, w0v = 200µm, and that for the beam w0u = 20µm, w0v = 20µm

in all directions. The latter is higher due to the focusing effect in v direction. For the

same reason we can predict that the scattered intensity for the beam w0u = 200µm,

w0v = 20µm must be similar to that of w0u = 20µm, w0v = 20µm in forward and

backward directions and it is really true in Fig. 4.17.

We now consider the scattered intensities of an elliptical cylinder (with the same

particle as in Fig. 4.11) illuminated by different Gaussian beams. In Fig. 4.18, the



84 Chapter 4. VCRM for scattering of Gaussian beam by an elliptical cylinder

similar focusing effect is observed and the conclusions for a circular cylinder (Fig.

4.17 ) are still valid, but the angular dispositions are different and dependent on the

incident angle.
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Figure 4.18: Same parameters as Fig. 4.11, except for the waist radii of the beam.

Then the positions of the astigmatic elliptical Gaussian beam center are considered

as parameters. Fig. 4.19 illustrates the scattering diagrams of the astigmatic circular

Gaussian beams. The beam centers in u direction always locates on the axis of the

cylinder, but the beam centers in v direction are shifted on w axis by an elliptical

cylinder. Note that wdv > 0 means that the center of beam is shifted toward to the

propagation direction. From this figure, we can see that the curves of the scattered

intensity for wdv = 0µm and wdv = −50µm are coincident. That is because that the

curvature radius in v direction at the incident point is very large in this case, their

scattering intensity is weak.

On the other way, when beam center is shifted toward the propagation direction,

the scattering diagrams are different from that the beam center locates after the

cylinder axis. This can be explained that when the beam center is before the cylinder

axis, the wave arriving on the particle is convergent. We can found this effect in the

scattering of wdv = 50µm. With the beam center in v direction approaches to the axis

of cylinder, the focusing effect decreases gradually (wdv = 25µm for example). The

variation of the curvature radius Rv of the refracted ray (p=1) in z direction on the

incident point (x=-a,y=0) as function of wdv is compiled in Table 4.1. It is clear that
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the focal distance for wdv = 50µm is the nearest to the observation distance(0.1m),

so its intensity is much higher than the scattering intensities for wdv = 25µm and

wdv = 0µm.
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Figure 4.19: Same particle as in Fig. 4.11 illuminated by an astigmatic elliptical
Gaussian beam of waist radii of 25µm in u and v directions. The beam waist in u
direction is located at center of the particle while the beam waist in v direction moves
along the beam axis.

Table 4.1: Evaluation of the wavefront curvature radius in v direction of refracted ray
(p = 1) of an elliptical cylinder(a = 50µm,b = 40µm). The beam waist in u direction
is located at center of the particle while the beam waist in v direction moves along
the beam axis.

wdv(µm) -50 0 10 20 30 40 50
Rv(m) 0.193 0.193 0.161 0.138 0.120 0.107 0.096

4.6 Conclusion

In this chapter, Vectorial Complex Ray Model has been employed to predict the light

scattering of an infinite elliptical cylinder illuminated by three kinds of Gaussian beam.

To validate the numerical code, the scattering of a two dimensional Gaussian beam

by a capillary is chosen, to compare with data available in the literature. A good

agreement is found. Then the scattering properties as function of the observation

distance, the waist radii, the orientation and the position of beam were examined.
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We discovered important focusing effects at some particular observation distance for

a given waist radius. We also observed the separation of scattering orders and total

reflection when a very deformed elliptical cylinder is illuminated by a strongly focused

beam.



Chapter 5

Plane wave scattering by an
elliptical cylinder at diagonal
incidence

In the last two chapters, VCRM has been applied to the light scattering of a plane wave

and a shaped beam by an elliptical cylinder at normal incidence (in 2D model). In this

chapter, we are trying to extend VCRM to the interaction of an elliptical cylinder and

a plane wave at diagonal incidence. In this case, the ray tracing is in three dimensions.

Adler et al have noted [86]: “There has been much less investigation of the caustic of

plane wave/cylinder scattering than there has been of plane wave/sphere and plane

wave-spheroid scattering, and perhaps this neglect was due to the expectation that

nothing really new would be seen”. And their experimental observations have shown

that this is in fact not the case. We will show in this chapter that light scattering of

a diagonally incident plane wave by a cylinder, especially an elliptical cylinder, is rich

in phenomena with clear intuitive interpretation. Here we have two new difficulties

compared to the normal incidence cases studied in the previous chapters:

• Ray trajectories : At normal incidence, the ray tracing is in a plane (scattering

plane), so ray trajectories are relatively easy to determine. But for the diagonal

incidence (in 3 dimensional model), the incident rays and refracted rays are no

longer in a plane. The emergent rays are along the surface of a cone and can be

viewed on the circle C (Fig.5.1), toward the apex of cone [87]. Thanks to the

representation of the rays in VCRM, the ray tracing process will be considerably

simplified.

87
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• Cross polarization: At diagonal incidence, the polarization of the emergent

wave will no longer stay in the same direction, or the same plane, as the incident

wave polarization. That means that the polarization direction of a ray before

and after the pth interaction with the cylinder surface changes. In VCRM, the

polarizations of incident, refracted and refracted waves will be decomposed in

two directions: perpendicular and parallel to the plane defined by the incident

ray and the normal of the particle surface.

5.1 VCRM for an infinite elliptical cylinder at di-

agonal incidence

5.1.1 Ray tracing

Now, we refer to the ray tracing in an elliptical cylinder illuminated by a diagonally

incident plane wave. In this case, the directions of all the incident rays are the same.

But the direction of the incident plane varies as a function of the incident point of

a ray on the surface of the cylinder, so a special attention should be paid to the

application of the Fresnel formulae.

Consider an elliptical cylinder whose center O is located at the origin of the Carte-

sian coordinate, illuminated diagonally by a plane wave. z axis is along the axis of

the elliptical cylinder, x and y axis along the two main axes of the ellipse in xy plane.

The propagation direction of the plane wave makes an angle ξ with x axis, an angle

ζ with z axis. The geometry is shown in Fig. 5.1. The wave vector of the incident

wave is therefore written by

k = sin ζ cos ξex + sin ζ sin ξey + cos ζez (5.1)

when ζ is equal to 90◦, the incident wave direction lies in the xy plane and therefore

corresponds to the normal incidence.

In order to calculate the curvature matrix of wavefront and resolve the polarization,

we define two orthogonal vector base: one at the surface of the cylinder and the other

on the surface of the wavefront. For the first one, we choose normal of the cylinder

surface n and unit vector along z axis as the two base vector. The third one is defined

by

t = n× ez (5.2)
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Figure 5.1: Schemata od a cylinder diagonally illuminated by a plane wave.

The unit vectors n, ez and t form triad on the cylinder surface. The base vectors ez

and t are tangent to the surface of cylinder and n is perpendicular to the surface.

Now, we define the base vectors on the wavefront surface. The unit vector b

tangent to the wavefront surface and perpendicular to the wave vector k and the

normal n is defined by

b =
k × n

||k × n||
(5.3)

The unit vector b defined in such way is also perpendicular to the refracted wave

vector k′ and the reflected wave vector kl, so common for the incident wave, refracted

wave and reflected wave

b =
k × n

||k × n||
=

k′ × n

||k′ × n||
=

kl × n

||kl × n||
(5.4)

The base vectors c, c′ and cl are then defined by b, k, k′ and kl

c = b× k, c′ = b× k′, cl = b× kl (5.5)

The orthogonal base vectors are (k, b, c) for the incident wave, (k′, b,c′) for refracted

wave and (kl, b, cl) for the reflected wave. It is worth to point out that the unit vector

b is perpendicular to the incident plane, the other base vectors lie in the incident plane.

We also define the unit vector tangent to the surface of the cylinder and lying in

the incident plane:

τ = n× b (5.6)

According to Snell-Descartes law, the tangent components of the electric field on

the interface are continuous, so the tangent components of the reflected wave vector
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klτ and the refracted wave vector k′τ are equal to that of the incident wave vector

klτ = k′τ = kτ . The difference with respect to the section 3.2.1 is that the components

of the refracted/reflected waves in the z direction are determined by incident angle

ζ and counted for a specific value . The refracted wave vector k′ and the reflected

vector kl can be finally expressed by

k′ = k′xex + k′yey + k′zez = k′ττ + k′nn (5.7)

kl = klxex + klyey + klzez = klττ − klnn (5.8)

where the normal and tangent components of any vector k can be calculated accord-

ingly to the projection law: kn = k · n = kxnx + kyny + kznz and kτ = k · τ =

kxτx + kxτy + kzτz respectively.

Once we know the refracted wave vector k′, the coordinate of the former intersec-

tion point x0, y0, z0 and the equation of the ellipse, it is easy to obtain the coordinate

of the next intersection point,

xp = −x(b
2 − a2k21)± 2abk1

√
a2 − x2

b2 + a2k21
(5.9)

yp = k1xp + y0 − k1x0 (5.10)

zp =

√
(xp − x0)2 + (yp − y0)2

tan[cos−1( k′z
mk

)]
(5.11)

where k1 = k′y/k
′
x. k

′
x, k

′
y and k

′
z are the components of the first refracted and internal

reflected wave in x, y and z directions respectively. By repeating the procedure

described above, we can trace all the rays until they emerge from the particle.

5.1.2 Curvature of wavefront

We have seen that the wavefront equation (Eq. (3.3)) can be simplified as two scalar

equations in the case of normal incidence for a plane wave and a shaped beam. But

in the diagonal case, the principal directions of the wavefront refracted and reflected

rays are unknown, we have to use the curvature matrix (in Eq. (3.3)) and to calculate

the curvature of the wavefronts step by step.

When a plane wave is incident onto a particle, the curvature matrix of the incident

wavefront is given by

Q =

(
0 0
0 0

)
(5.12)
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So the term of kΘT QΘ in the Eq. (3.3) is removed, because the curvature matrix of

the incident wave is null.

Now the curvature matrix of the dioptric surface for an infinite cylinder is ex-

pressed by

C =

(
1
ρ1

0

0 0

)
(5.13)

where ρ1 is the local curvature radius of the elliptical section of the cylinder.

The projection matrix Θ′ between the base vectors of the dioptric surface (t,ez)

and the base vectors for the refracted wavefront (c′, b) is [73]

Θ′ =

(
t · c′ t · b
ez · c′ ez · b

)
(5.14)

The projection matrix between the reflected wave and the dioptric surface is given by

Θ′
l =

(
t · cl t · b
ez · cl ez · b

)
(5.15)

So the curvature matrix of the refracted wavefront can be obtained from Eq. (3.3) as

Q′ =
1

k′
(k′ − k) · nΘ′T−1CΘ′−1 (5.16)

where the superscript represents the inverse of its matrix. Eq. (5.16) can also be

written explicitly in a matrix form

Q′ = A

[
(ez · b) (ez · b) (−ez · b) (t · b)
(−ez · b) (t · b) (t · b) (t · b)

]
(5.17)

where the coefficient

A =
k′n − kn
k′ρ1

1

(t · c′ ez · b− ez · c′ t · b)2
(5.18)

To obtain the principal curvature of refracted wavefront, the diagonalization of the

matrix is necessary. After the diagonalization, the curvature matrix reads as [88]

Q′ = A

[
(ez · b)2 + (t · b)2 0

0 0

]
(5.19)

From the matrix above, we found that one of the curvature radius of refracted wave

is infinity because only one element in the matrix is not null. This was expected since
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a plane wave becomes locally a cylindrical wave after the first refraction. So, the

curvature radius of the wavefront after the first refraction are given by:

R′
11 =

1

A[(ez · b)2 + (t · b)2]
(5.20)

R′
12 = ∞ (5.21)

It is necessary to point out that only the refracted wavefront curvature is derived

in detail, since the matrix for reflected wave can be obtained directly thanks to the

similarity in the derivation for the Θ′ and Θ′T replaced by Θ′
l and Θ′T

l .

In the case of normal incidence, the formulae of curvature radii are significantly

simplified. In fact the term of (ez · b)2 + (t · b)2 in the Eq. (5.19) is simplified to 1

since b and ez are in the same direction and b is perpendicular to t. The term of

(t · c′ ez · b− ez · c′ t · b)2 in Eq. (5.18) simplifies to cos2 θr. Therefore, the curvature

radius of the refracted wave becomes

k′ cos2 θr
R′

1

=
k′ cos θr − k cos θi

ρ1
(5.22)

This formulation of curvature radius is the same as Eq. (3.8) in chapter 3.

Let us now introduce the concept of eigenvectors, which are used to express the

two principal directions of the wavefront surface. The eigenvectors corresponding to

Eq. (5.19) are [88]

s1 =

(
1

−t · b/ez · b

)
(5.23)

s2 =

(
1

ez · b/t · b

)
(5.24)

The normalized eigenvectors are therefore

s1 =

 1√
1+(−t·b/ez ·b)2
−t·b/ez ·b√

1+(−t·b/ez ·b)2

 (5.25)

s2 =

 1√
1+(ez ·b/t·b)2
ez ·b/t·b√

1+(ez ·b/t·b)2

 (5.26)

Since s1 and s2 given above are expressed in the base tangent to the refracted wave-

front surface (c′, b), they can be expressed by

s1 =
1√

1 + (t · b/ez · b)2
c′ +

−t · b/ez · b√
1 + (t · b/ez · b)2

b (5.27)

s2 =
1√

1 + (ez · b/t · b)2
c′ +

ez · b/t · b√
1 + (ez · b/t · b)2

b (5.28)
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Once the two principal curvatures (Eq.( 5.19)) and directions (Eq. (5.27) and (5.28))

of a refracted ray are known at one point, these properties of the refracted ray when

it arrives at the second interface (as incident ray) can be deduced. The curvature

matrix of wavefront is given by

Q1 =

 1
R′

11+d
0

0 0

 (5.29)

where d is the distance between the two successive interaction points. The two prin-

cipal directions of refracted wavefront remain the original directions (b and c′). Sim-

ilarly to the refraction at the first point, the curvature matrix of incident wave Q at

the second point is the curvature matrix before the second refraction Q1. The matrix

of dioptric surface at this point is noted by the matrix C1. According to the properties

of an infinite cylinder, one of the principal directions is still parallel to z axis (ez),

the other is tangent to the dioptric surface (t1).

The projection matrix Θ of the base of the incident wavefront (s1, s2) and the

dioptric surface is computed by

Θ =

(
t1 · s1 t1 · s2
ez · s1 ez · s2

)
(5.30)

The projection matrix Θ′ of the base of the second refracted wavefront surface (s′1, s
′
2)

and the dioptric surface (t1, ez)

Θ′ =

(
t1 · b1 t1 · c1
ez · b1 ez · c1

)
(5.31)

Like for the first refraction, we define (b1, c1) to represent the directions of the second

refracted wavefront.

According to Eq. (3.3), the curvature matrix of the refracted wavefront after the

second refraction is given by

Q′ =
1

k
[(k′ − k) · nΘ′T−1CΘ′−1 + kΘ′T−1ΘTQΘΘ′−1] (5.32)

Thus, the curvature radius of each refracted and interior reflected wavefront can be

obtained by repeating calculation detailed in Eq. (5.17) to Eq. (5.29).

5.1.3 Polarization

When a cylinder is illuminated by a wave at diagonal incidence, the cross polarization

will occur. Lock has examined the scattering of a circular infinite cylinder with diag-
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onal incidence of the plane wave by GO [86]. Two polarizations are considered for the

incident wave. In case 1, the electric vector of incident wave vibrates along y direction,

and its electric field is expressed by E0 = ey. In case 2, the electric vector of incident

wave vibrates in the xz plane, and is given by E0 = cos ζex+sin ζez. Zouros [51] has

studied the scattering of an elliptical cylinder by a method of separation of variable

and considered an incident wave polarized in z direction. It seems unreasonable to us

for the polarization of a diagonal incident wave has only z component. Here we follow

the procedure initially introduce by Lock which consider two kinds of polarizations:

one is perpendicular to the plane defined by the incident wave k and z axis (ϵ), the

other is parallel to this plane (µ). The electric field of ϵ polarization is given by

E0 =
ez × k

||ez × k||
= − sin ξex + cos ξey (5.33)

If the incident ray is µ polarized, its electric field is expressed by

E0 = cos ζ(cos ξex + sin ξey) + sin ζez (5.34)

To apply Fresnel formulae, the two different polarization states of the incident rays

should be projected perpendicularly and parallel on the incident plane, i.e in directions

b and c. This leads for the amplitude of the refracted wave to{
Et0

⊥ = t⊥E0 · b
Et0

∥ = t∥E0 · c
(5.35)

and for the amplitude of the reflected wave to,{
Er0

⊥ = r⊥E0 · b
Er0

∥ = r∥E0 · c
(5.36)

where t⊥, t∥, r⊥ and r∥ are the refraction and reflection Fresnel coefficients respectively.

The emergent electric field for the reflection (p = 0) is therefore given by

E0 = Er0
⊥ b+ Er0

∥ cl (5.37)

The refracted electric field is given by

Et0 = Et0
⊥ b+ Et0

∥ c′ (5.38)

The refracted wave continues to propagate inside the cylinder and it will be considered

as the incident wave for the next interaction. In the same manner, we can obtain the
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refracted and reflected electric fields for p = 1 by using Eq. (5.35) and Eq. (5.36)

with E0, b and c replaced by Et0, b1 and c1:{
Et1

⊥ = t⊥Et0 · b1
Et1

∥ = t∥Et0 · c1
(5.39)

and , {
Er1

⊥ = r⊥Et0 · b1
Er1

∥ = r∥Et0 · c1
(5.40)

It is worth to point out that Fresnel coefficients of an elliptical cylinder are different

at each interaction point. The amplitude of the electrical field of each refraction and

reflection proceeds in the similar way, the polarization sates of p order of ray is hereby

Ep =

{
Er0

⊥ b+ Er0
∥ cl p = 0

Etp
⊥ bp + Etp

∥ c′p p ≥ 1
(5.41)

5.1.4 Amplitude

Since the cross polarization occurs at diagonal incidence, the energy factor εX,p of

refracted and reflected fraction is no longer suitable to denote the amplitude. The

same effect can be described for Ep. The total field in far zone at a given angle θ is

calculated by the summation of the complex amplitude of all order rays arriving at

the same angle :

SX,p =

{
A|Etp

⊥ | X = 1
A|Etp

∥ | X = 2
(5.42)

where A =
√

π
2
D|SG| exp(iϕp). Note that E

tp
⊥ and Etp

∥ should be replaced by Er0
⊥ and

Er0
∥ , when p = 0.

5.2 Numerical results and discussion

We first consider a circular cylinder of radius a = 50µm and refractive indexm = 1.484

illumined by a diagonal plane wave with ζ = 39.28◦ and ξ = 0 by setting the same

parameters as in Fig. 4 in the reference [86]. The trajectories for p = 1 to p = 6

are illustrated the Fig. 5.2. We found an agreement between Fig. 5.2(a-e) and

the Fig. 4 in the reference [86]. Moreover, the trajectories of order p = 6 are also

given. According to the notation of Lock [86], varying the tilt angle of plane wave

with respect to the cylinder is equivalent to varying the cylinders’s refractive index
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Ray trajectories and interior cusp caustics for m′ = 2 for (a) p = 1, (b)
p = 2, (c) p = 3, (d) p = 4, (e) p = 5 and (f) p = 6.

at normal incidence. So the projection of ray tracing in xy plane for a plane wave

with ζ = 39.28◦ by a cylinder of refractive index m = 1.484 is identical to ray tracing

for a cylinder of refractive index m′ = 2 at normal incidence. The position of interior
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(a)

(b)

(c)

Figure 5.3: p = 1 focusing caustic for (a) m′ = 1.845, (b) m′ = 2, and (c) m′ = 2.41.

caustics on the axis (y=0) can be calculated by [89]

x =
(−1)p

2p− 1− n′a (5.43)

Except for p = 2 whose the caustics locates at the exterior of the cylinder, the others

all locates in the interior of cylinder. The caustics for p = 1 occurs at the boundary
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of cylinder. From Eq. 5.43 and Fig. 5.2, we find the cusp of different orders are

consistent and more close to the axis of the cylinder as the ray order increase.

In VCRM, the curvature radii of wavefront is introduced to described the diver-

gence/convergence of wavefront. So the caustics position of rays can be described by

the center of wavefront. Fig. 5.3 shows the center of curvature radii for p = 1 by

setting the refractive indices m′ > 2, m′ = 2 and m′ < 2. Those figures are also chosen

to compare with the conclusions of reference [86], where the cusp points for p = 1

locates outsider of the cylinder surface for m′ < 2, touches the surface for m′ = 2 and

lies within the cylinder for m′ > 2.

Figure 5.4: p = 1 focusing caustic for an elliptical cylinder of a = 50µm, b = 40µm
and m = 1.33 illuminated by a diagonal plane wave making an angle ζ = 30◦ with z
axis and an angle ξ = 20◦ with x axis.

Fig. 5.4 illustrates the center of wavefront curvature after the first refraction

(p = 1) for an elliptical cylinder of a = 50µm, b = 40µm and m = 1.33 illuminated by

a diagonal plane wave with ζ = 30◦ and ξ = 20◦. In Fig. 5.4, the centers of wavefront

curvature are no longer symmetric and become more complicate relative to the case

of circular cylinder. The refractive index m = 1.33 of cylinder at diagonal incidence

(ξ = 30◦) is equivalent to the refractive index m′ = 2.02 at the normal incidence. To

validate its results, the ray tracing for an elliptical cylinder of a = 50µm, b = 40µm

and m = 2.02 is given in Fig. 5.5. The trajectories of curvature center in the Fig. 5.4

are the same as the position of focusing cusp points in Fig. 5.5.
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Reference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axisReference axis

Figure 5.5: p = 1 focusing caustic for an elliptical cylinder of a = 50µm, b = 40µm
and m′ = 2.02 illuminated by a plane wave making an angle ξ = 20◦ relative to x
axis.

5.3 Conclusion

In this chapter, VCRM is applied to deal with the scattering of an elliptical cylinder

illuminated by a diagonal plane wave. To validate our theory, the ray trajectories

and the cusp point described by the curvature radii of wavefront for circular cylinders

are given. Due to light scattering of a diagonally incident plane wave by an elliptical

cylinder has rich in phenomena, the cusp points of the elliptical cylinder are then

described. Due to the difficulty to deal with the polarization and the calculation of

the Fresnel coefficients in the three dimensional coordinate transformation, the work

on the prediction of the scattering diagram has not yet completed.
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Chapter 6

Conclusions and perspectives

This thesis is devoted to the development of Vectorial Complex Ray Model(VCRM)

to describe the interaction of an infinite elliptical cylinder with a plane wave or a

Gaussian beam. In this chapter we draw the conclusions of presented work and give

perspectives in further studies.

6.1 Conclusions

The light scattering theories are essential to the particle and particle system char-

acterization which concerns many research and industrial domains, such as the en-

vironmental control, the fluid mechanics, the combustion, the micro fluidics and the

telecommunication. The most used models of particles in the optical metrology are

sphere and infinite circular cylinder for simplicity and the theories have been well de-

veloped. However, the shape of the particles in practice are often not so simple. The

liquid jet generated from the injection, for example, is not a perfect circular cylin-

der and the droplets produced in the atomization are not spherical. Some theories

and numerical methods have also been developed for regular shape particle, such as

spheroid, ellipsoid, or elliptical cylinder to take into account the deformation of the

particles. Nevertheless, the sizes of the particles are often limited because of the nu-

merical difficulty. The Vectorial Complex Ray Model(VCRM) recently developed in

the laboratory permits to deal with the scattering of large irregularly shaped particles.

One of the significant merits of the VCRM is that the concept of wavefront curvature

is introduced to the ray model to describe the divergence/convergnece of the wave it

presents. In such way, the phase shift due to the focal line can also be counted easily

101
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for complex shape particles. This new property makes a big step in improving the

precision of ray model in the scattering theory.

After a brief recall of the fundamental models and concepts in light scattering, the

general principle of the VRCM is presented. The novel model has been applied firstly

to deal with the scattering of an infinite cylinder of elliptical section illuminated by a

plane wave propagating perpendicularly to the cylinder axis. The incident direction

can be oblique relative to the axes of the ellipse. By comparison of the scattering

diagrams of VCRM for a circular cylinder with that of LMT - a rigorous theory, we

have shown that the precision of VCRM is very good for the cylinder of diameter

larger than tens of wavelength if all the properties of the rays, i.e. propagation

direction, polarization, phase, amplitude and curvature of wavefront, are correctly

counted. Since we have not found any results in the literature for the scattering

of large elliptical cylinders, the scattered intensities have also been compared to the

results of the code VCRM for a long ellipsoid to validate our code for elliptical cylinder.

The scattering diagrams as function of the incident angle and the aspect ratio of

the ellipse have been studied. The structure of rainbow is very sensible to the size,

the refractive index and the ellipticity of the particle. the refractometry of rainbow

is a common technique in optical metrology. A special attention has been paid to the

rainbow phenomena of an infinite elliptical cylinder. It is found that if the aspect ratio

is important certain orders of rainbows may disappear while the others are doubled

for certain incident angles.

Moreover, our model and code have also been used to calculate the diagrams

of bubble cylinders (the relative refractive index of the cylinder to the surrounding

medium is less than unity) and absorbing cylinder. We observed a special rainbow

phenomenon occurred in the elliptical bubble cylinder at certain incident angles which

is impossible to happen in the circular cylinder.

VCRM has then been extended to predict the scattering of a shaped beam by an

elliptical cylinder also at normal incidence. Three types of Gaussian beams (two di-

mensional Gaussian beam, circular Gaussian beam and astigmatic elliptical Gaussian

beam) have been considered. In case of two dimensional Gaussian beam incidence,

the code is validated by comparison of the scattering diagram of a capillary to the

numerical and experimental results found in the literature. For the circular Gaussian

beam, the focusing effect in the plane containing the cylinder axis is observed and

studied extensively. This effect can be explained by the wavefront equation in VCR-
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M. We have shown that the scattered wave from an elliptical cylinder is, in general,

not cylindrical nor spherical. The astigmatic elliptical Gaussian beam is a Gaussian

beam with a elliptical section and its two beam waists may locate at different position

along the beam axis, so it is a general form of the two dimensional and the circular

Gaussian beams. Furthermore, by choosing the two waist positions, different forms

of beam can be obtained. The effect of beam shape on the light scattering is then

studied.

When the direction of the incident wave is not perpendicular to the axis of the

cylinder, the scattering becomes a problem of three dimensions. The ray tracing, the

change of polarization state and the divergence/convergence of the wave through the

surface of the particle as well as the calculation of the amplitudes of the waves are very

difficult, even impossible, in the context of the classical geometric optics. The thesis

presents a very elegant formalism and easy to apply to three-dimensional scattering

under VCRM. The code developed on this basis has been validated in comparison

with the results found in the literature for the particular case - the prediction of the

caustic of a homogeneous circular cylinder. The code was then used to predict the

caustic of an elliptic cylinder.

6.2 Perspective

Though the scattering of light by an infinite cylinder at normal incidence is a special

case and theoretically easy, it is important for the optical metrology since it corre-

sponds to conventional configurations in experimental setup. What we have developed

in the thesis can be applied to the study of the deformation and the measurement of

the ellipticity of elliptical cylinder. A systematic study on the relation between the

scattered diagram profiles at different angles and the form of the particle could pro-

vide practical information for the measurement of the deformation of a optical fibers

in production, for example.

Furthermore, other shaped beams, i.e the bessel beam and higher order Hermite-

Gaussian beam can be considered. A further extension of VCRM to other irregular

particles, coated circular or elliptical cylinder and cylinder with inclusions, also could

be done.

The formalism for the scattering of a plane wave by an infinite elliptical cylinder

at diagonal incidence has been well developed in the thesis. The code has been also
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validated by comparison with the results in the literature for the prediction of caustics.

This is an important advance in VCRM to 3 dimensional scattering. The calculation

of the scattering intensity is to be finished and should be direct. A extension to the

scattering of other shaped beams should not be too difficult.

All the ray models for the light scattering have the same intrinsic problem: the

singularities appear where the amplitude (intensity) or its derivative is not continuous.

There are three kinds of singularity: 1). in the rainbow angle where the intensity tends

to infinite, 2). at the border of the particle where the variation of the amplitude of

the incident wave is abrupt, 3). in the critical angle where the total reflection occurs,

so the amplitude of the reflected wave is not continuous. In these regions, the ray

models themselves fail to predict correctly the scattering intensity. A supplementary

theory or model are to be used to correct the prediction of the ray models. The first

one is solved by Airy theory for a spherical particle or a circular infinite cylinder.

The second singularity is often compensated by the diffraction theory. But this is

possible or relatively simple only for plane wave illumination on a particle of simple

form. The third one has been studied by Marston [80] for spherical particle and

Onofri for spheroid. The fundamental idea in these supplementary theories is to

take into account the wave effect near the singularity point or caustics by analytical

or semi-analytical expression. To profit the advantage of the VCRM to deal with

the scattering of shaped beams by particles of arbitrary shape, the problem near the

singularity point must be solved. In fact, this may be realized by numerical simulation

since we know all the properties of all the rays in VCRM.
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Résumé

Cette thèse est dédiée à l’étude théorique et numérique de diffusion de la lumière

par un cylindre infini de section elliptique éclairé par une onde plane ou un faisceau

gaussien avec le Model de Tracé de Rayons Vectoriels Complexes (TRVC) développé

au laboratoire.

La prédiction théorique et numérique de l’interaction de la lumière avec des partic-

ules est essentielle pour la caractérisation de systèmes particulaires par la métrologie

optique. Ceci concerne un domaine très large tant pour la recherche fondamentale que

pour des applications industrielles, comme l’atomisation, la combustion, la mécanique

des fluides, le contrôle environnemental, la micro fluidique, la télécommunication ...

Les modèles de particules les plus utilisés dans les techniques de mesure optique son-

t la sphère et le cylindre circulaire et les théories correspondantes sont aussi bien

développées. Cependant, les formes de particules rencontrées dans la pratique ne sont

pas aussi simples. Les jets liquides générés par l’atomisation, par exemple, ne sont pas

tout à fait cylindriques. Le contrôle de la circularité de fibres optiques à la production

est aussi important pour garantir sa qualité de transmission des signaux. Des théories

et des méthodes numériques ont développés pour des particules de forme régulières

comme sphéröıde, ellipsöıde ou cylindre infini de section elliptique, afin de prendre en

compte la déformation, mais la taille de particules est très limitée à cause de difficulté

de calcul numérique.

Contrairement aux méthodes citées ci-dessus, l’optique géométrique est valide pour

des objets de tailles très grandes devant la longueur d’onde. Elle est, sur le principe,

facile à utiliser pour la diffusion de la lumière par des particules de forme quelconques.

Par contre elle est rarement utilisée à prédire quantitativement l’interaction de la

lumière par des particules, car d’une part elle n’est pas aussi simple pour des particules

de forme complexe, et d’autre part sa précision n’est pas très satisfaisante. Afin

de surmonter ces difficultés, Ren et al ont développé le Tracé de Rayons Vectoriels

Complexes (TRVC) en introduisant la propriété de forme du front d’onde dans le

model de rayon. TRVC est bien adapté à l’étude de diffusion d’une onde de forme

quelconque par un objet de forme complexe de surface lisse afin de prédire la diffusion

de particule avec une précision très satisfaisante.

Dans cette thèse, après un rappel des fondamentaux de diffusion de la lumière

et les modèles de bases à utiliser, TRVC est d’abord appliqué à la diffusion d’une

onde plane par un cylindre infini de section elliptique à incidence normale. Afin de



114 Résumé

valider notre code de calcul et de tester la précision de TRCV, les diagrammes de

diffusion prédits par TRVC ont été comparés avec ceux de la Théorie de Lorenz-Mie

- théorie rigoureuse de référence. Il a été montré que la précision de TRVC est très

satisfaisante pour des particules de tailles au-delà d’une dizaine de longueurs d’onde.

Le code développé a été ensuite appliqué à l’étude de diffusion d’un cylindre elliptique.

On a trouvé que les diagrammes de diffusion d’un cylindre elliptique sont sensibles à

son ellipticité et l’angle d’incidence de l’onde plane par rapport aux axis de l’ellipse du

cylindre. Une étude approfondie a été menée sur la relation entre les positions d’arcs-

en-ciel et l’ellipticité ainsi que l’angle d’incidence de l’onde plane. Contrairement à un

cylindre circulaire ou une sphère, certains ordres d’arcs-en-ciel d’un cylindre elliptique

disparaissent, d’autres doublent en fonction de son ellipticité et l’angle d’incidence de

la lumière. Notre code peut être aussi appliqué à la diffusion d’un cylindre absorbant

et d’une bulle cylindrique (indice de réfraction inférieur à celui du milieu environnant).

Les faisceaux laser d’extension finie sont largement utilisés dans la métrologie

optique. Pour répondre à ces besoins, TRVC a été appliqué à l’étude de diffusion

d’un faisceau de forme quelconque. Ici encore, pour simplifier le problème et mettre

en évidence des paramètres principaux sur les phénomènes physiques, on se limite à

l’incidence normale. Après une présentation générale du formalisme - détermination de

la courbure du front d’onde et la direction de propagation d’un rayon dans un faisceau,

la méthode développée a été appliquée à la diffusion de trois types de faisceau gaussien

: faisceau gaussien en deux dimensions, faisceau gaussien circulaire et faisceau gaussien

elliptique astigmatique. Les effets de l’éclairage localisé, la focalisation du faisceau

à travers le cylindre, ainsi que l’ellipticité et l’angle incidence ont été étudiés. Un

accent a été mis à l’interprétation physique des phénomènes. Par exemple, lorsque

la dimension du faisceau est petite devant le diamètre du cylindre, la diffusion de

différents ordres sont bien isolés. Les positions des pics et l’intensité relative permet

d’identifier la contribution de différents paramètre et donc très utile pour la conception

de technique de mesure dédiée.

Lorsque la direction de l’onde incidente n’est pas perpendiculaire à l’axe du cylin-

dre, la diffusion devient un problème de trois dimensions. Le tracé de rayons, le

changement de l’état de polarisation et la divergence/convergence de l’onde à travers

la surface de la particule ainsi que le calcul des amplitudes des ondes sont très difficiles

voire impossibles dans le cadre de l’optique géométrique. La thèse présente dans le

cadre de TRVC un formalisme très élégant et facile à appliquer à la diffusion en trois

dimensions. Le code développé sur cette base a été validé en comparaison avec les
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résultats trouvés dans la littérature pour le cas particulier - la prédiction de la caus-

tique d’un cylindre circulaire homogène. Le code a été ensuite utilisé pour prédire la

caustique d’un cylindre elliptique.

Mots clés: Diffsion de la lumière, Tracé de Rayons Vectoriels Complexes, Cylin-

dre elliptique, Faisceau gaussien, Incidence diagonal



Abstract

Theoretical and numerical prediction of light scattering by particles is essential for

the optical metrology in basic research and in industrial applications such as atom-

ization, combustion, mechanics of fluids, environmental control, micro-fluidics and

telecommunication. The sphere and the circular cylinder are the models the most

used in optical measurement techniques, but the particles encountered in practice are

not so simple. Some theories and numerical methods have developed for non spherical

particles but the particle size is very limited due to difficulty of numerical calculation.

The geometrical optics is just valid for objects of size much larger than the wave-

length. It is, in principle, can be applied to any shaped particles. However it is rarely

used to predict quantitatively the light scattering of particles, because it is not so

simple for complex shaped particles and its accuracy is not very satisfactory. In order

to overcome these difficulties, Ren et al. have developed the Vectorial Complex Ray

Model (VCRM) by introducing the wavefront curvature.

In this thesis, VCRM is applied to the scattering of a plane wave by an infinite

elliptical cylinder at normal incidence. By comparison with Lorenz-Mie theory, it is

shown that VCRM can predict the scattering of particles of size more than tens of

wavelengths with good precision. The scattering diagrams of an elliptic cylinder are

sensitive to its ellipticity and the incident angle with the axis of the ellipse. The

rainbow structures are very sensitive to the ellipticity of the cylinder and the inci-

dent angle of the wave plane, some orders of rainbows may disappear and others are

doubled. The scattering of an absorbing and bubble (m < 1) cylinder are also studied.

VCRM is then applied to the scattering of shaped beam, also at normal incidence.

After a general presentation of the formalism for determining the curvature of the

wavefront and the direction of a ray in the beam, the developed code has been applied

to the prediction of three types of Gaussian beam: 2 dimensional Gaussian, circular

Gaussian beam and astigmatic elliptical Gaussian beam. The focusing effects of the

beam through the cylinder is studied and interpreted in term of VCRM. When the

beam is small, the positions of the peaks and the relative intensity allows to identify

the contribution of different parameter and therefore very useful for the design of

dedicated measurement technique.

At diagonal incidence, the scattering problem becomes 3D. A very elegant for-

malism is derived. A code is developed and validated by comparison with the results

in the literature for a homogeneous circular cylinder. It is then used to predict the

caustic of an elliptic cylinder.

KeyWord: light scattering, geometrical optics, Vectorial Complex Ray Model,

elliptical cylinder, Gaussian beam, diagonal incidence


