Tutorial Exercises Optical Detectors

Exercise 1. Basic quantities of photometry

- 1. What is the wavelength range of light in the visible ? Deduce its frequency domain.
- 2. The Planck constant h is $6.62 \cdot 10^{-34}$ uSI (units in the International System) and the charge of the electron e is $1.6 \cdot 10^{-19}$ uSI. Deduce the energy of a photon in eV (electron volts) for the light in the visible domain.
- 3. An isotropic point source emits a total luminous flux (in whole space) of 1257 lm. Calculate the illuminance produced by the source on a screen situated at 10 m from the source. What then is the illuminance if all the luminous flux is confined into an arc angle of cone 15°?
- 4. A point source emits light to all the space. The emitted light intensity is 950 lm/sr. What is the flux received by a small area of 1 cm² located at 20 meters from the source, perpendicular to the light rays? What would be the flux if the normal of surface was tilted 30° relative to the incident rays?
- 5. Evaluate the luminance of the sun knowing that the irradiance received on the surface of the Earth is 500 W/m², the luminous efficiency of the eye to sunlight is about 91 lm/W. We assume that the sun is seen in a solid angle $\frac{\pi}{4}10^{-4}$ sr (corresponding to a cone of angle of 0.5 degree). In this calculation we neglect the attenuation of light by the atmosphere.

Exercise 2. Energy of light captured by a lens

We want to determine the energy of light captured by a lens. Suppose an optical system consisting of a lens of radius R = D/2, focal distance f and having a transmission rate τ , illuminated by a Lambertian area S_e of luminance L at a distance l. A receiving surface S_r is placed in the image plane located at a distance a from the focal plane of the lens.

Figure 1: Equivalent schema of the detector.

- 1. Calculate the energy flux incident on the surface S_r .
- 2. Calculate the illuminance E_{sr} received by the surface S_r . Give the simplified expression of E_{sr} in the case $l \gg D$.

Exercise 3. Halogen lamp

The characteristics of a halogen lamp are: supplied power $P_e = 500$ W; emitted radiant flux $F_e = 400$ W; emitted luminous flux $F_v = 8\ 000$ lm. This source satisfies the following laws:

- Stefan's law : $M_e = \sigma T^4$ with $\sigma = 5.67 \cdot 10^{-8}$ W· m⁻²· K⁻⁴, where T is the temperature of the source.
- Wien's law : $\lambda_{max}T = 2.898 \ \mu \text{m}\cdot\text{K}$, where λ_{max} is the wavelength of maximum emission from the source.
- 1. Calculate the luminous efficiency and electric efficiency.
- 2. The filament has a length l = 5 cm and its diameter is d = 0.2 mm. Calculate the temperature of the filament when the lamp illuminates.
- 3. Calculate the wavelength of the maximum radiation. In which domain of light is located this wavelength?
- 4. This lamp is considered punctual and used as a street light that distributes the light in the upper half space (indirect lighting by reflection from the ceiling). Calculate the luminous intensity characterizing the source.

Exercise 4. photoelectric cell

A photoelectric cell is illuminated with a monochromatic light of wavelength 526 nm and beam power of 0.25 W.

- 1. The work function is 2.2 eV, calculate the speed of photo-emitted electrons.
- 2. The quantum efficiency of the cell is 0.8 %, what is the intensity of the saturation current?

The useful constants: $q = 1.6 \cdot 10^{-19} \text{ C}$; $h = 6.62 \cdot 10^{-34} \text{ J.s}$; $c = 3 \cdot 10^8 \text{ m/s}$; $m_e = 9.1 \cdot 10^{-31} \text{ kg}$.

Exercise 5 : Cathode of a photocell

A cathode of a photoelectric cell is characterized by a work function of 2.5 eV. It is illuminated with monochromatic light of wavelength 400 nm.

- 1. Calculate the kinetic energy of the photo-emitted electrons and the stop voltage .
- 2. A potential difference $V_A V_C = 10$ V is now applied between the cathode and anode. Calculate the kinetic energy of the electrons as they arrive at the anode.
- 3. For this voltage, the cell is saturated $(i = I_S)$. Knowing that the power of the light beam is 400 mW and the saturation current is 50 mA, calculate the quantum efficiency of the cell.

Exercise 6 : Photodiode

A photodiode is designed to measure a light output of a source in an inaccessible area, located 1 km from the experimenter with a computer. The emitted power varies as function of time according to $\Phi(t) = \Phi_0 + \phi_1 \sin(\omega t)$. A cable will be used to transmit the signal.

We expect a variation of luminous flux with a maximum frequency $f_{max} = 100$ kHz and a maximum amplitude $\Phi_{1max} = 0.1$ mW. The maximum value of the DC component of the flux is estimated to be $\Phi_{0max} = 1$ mW.

The equivalent schema of the photodiode and its condition of usage is shown in Figure 2. The static sensitivity of the photodiode is $K = I/\Phi = 0.35$ A/W, and its proper capacity is $C_L = 80$ pF.

- 1. Is-it an active sensor or a passive sensor?
- 2. Determine the transfer function of the system $S(f) = V_L/\Phi$.
- 3. Determine the maximum gain G(f) = |S(f)| of the circuit and the cut-off frequency as function of K, R_L and C_L . We recall that the cutoff frequency corresponds to a decrease in the gain of a factor $\sqrt{2}$ from its maximum value.
- 4. What should the value of the resistance R_L for a sensor cutoff frequency to be 2 times of the maximum frequency of the useful signal?
- 5. With this resistance value, what is the gain (sensitivity) of the static sensor? What is the value of the dynamic gain when $f = f_{max}$?
- 6. Give the expression of voltage V_L as function of the flux received by the sensor for a signal of frequency to be 1/10 of the cutoff frequency.

Figure 2: Equivalent schema of the photodiode.

Exercise 7: Characterization of the emission of a source

- 1. Consider a source of light radiating isotropically a radiant flux F_e .
 - (a) What is the form of the emission indicator of this source? Justify the answer.
 - (b) What is the radiant intensity I_e of this source (in W \cdot sr⁻¹)?
 - (c) What is the irradiance E_e received at a distance d in far field?
- 2. Considered a spherical source of radius R, emitting as a black body at temperature T.

- (a) What is the total emittance M_e of the source integrated in all direction and for all wavelengths of the spectrum?
- (b) Give the expression of the radiant flux F_e as function of R and T.
- (c) Give the relation between emittance M_e of the source and the irradiance E_e at the distance d.
- (d) At what wavelength λ_{max} does the source radiates the most energy ?

Exercise 8: Efficiency of detectors

For a single-detector, we provides the following the quantum efficiency η as a function of the wavelength λ :

$\lambda(\mu m)$	0.8	1.0	2.2	3.0	3.6	4.2	5.1
η	0.1	0.5	0.6	0.75	0.7	0.5	0.2

- 1. Draw in a graph the variation of the current response in $R_{\lambda}(\lambda)$ of this detector, scale in x: 2 cm/µm, scale in y: 2 cm/A· W^{-1} . Then deduce:
 - (a) The domain of sensitivity of the detector in the range of the used wavelength.
 - (b) The wavelength λ_p at the peak.
 - (c) The current response at peak $R_{\lambda}(\lambda_p)$.
 - (d) The cutoff wavelength λ_c of the detector.
- 2. Draw in the same graph the ideal current response for a unity quantum efficiency of detector.

Compare the answers with the performance of the InGaAs-PIN photodiode G3476-05 given in the catalog *Hamamatsu* (current Response 0.95 A / W at the peak at 1.55 μ m, diameter of the active area $\phi = 0.05$ cm, see the technical sheet attached in the appendix). What is its wavelength and its peak quantum efficiency at this wavelength?

Show that the *NEP* (Noise Equivalent Power, 8×10^{-15} W \cdot Hz^{1/2}) and the detectivity D^* given at λ_p by the manufacturer (5 × 10¹² cm.Hz^{1/2} / W) are comparable.

Figure 3: Efficiency of the detector InGaAs-G3476-05 given by the constructor.

Exercise 9: Filter

The transmission curve of a filter is given in Figure 4-a. We observe through this filter a source of emission curve P_{λ} given in Figure 4-b. We do not concern with the real optical setup.

- 1. What is the color of the source inspected directly with the naked eye? What does it become the color of the source after passing through the filter?
- 2. Calculate the power received by the detector after passing through the filter.
- 3. If the detector response is $R=5\times 10^5$ V / W, and noise $\sigma=6~\mu$ V rms, what is the signal-to-noise ratio?
- 4. What is the NEP (Noise-equivalent power) of the detector ?
- 5. The time constant of the detector is $\tau = 10$ ms, calculate the response observed if the source behind a modulator of 10 blades rotating at n = 100 revolutions/min.

Figure 4: Filter.

Tutorial exercices Optical Detectors Correction

Exercice 1. Basic quantities of photometry

1. The wavelength range of light in the visible :

 $\lambda_{min} = 400 \text{ nm}, \quad \lambda_{max} = 800 \text{ nm}$

The relation between the frequency and the wavelength: $\nu = \frac{c}{\lambda}$ with $c = 3 \cdot 10^8$ m/s. So we have

$$\nu_{min} = \frac{c}{\lambda_{max}} = 3,75 \cdot 10^{14} \text{ Hz et } \nu_{max} = \frac{c}{\lambda_{min}} = 7,5 \cdot 10^{14} \text{ Hz}$$

2. We know $h = 6,62 \cdot 10^{-34}$ J.s, $e = 1,6 \cdot 10^{-19}$ C, $\lambda_{min} = 400$ nm et $\lambda_{max} = 800$ nm.

• The energy of a photon in Joule:

$$E_{max} = \frac{hc}{\lambda_{min}} = 5 \cdot 10^{-19} \text{ J}, E_{min} = \frac{hc}{\lambda_{max}} = 2, 5 \cdot 10^{-19} \text{ J}$$

• The energy of a photon in eV:

$$E_{max}(eV) = \frac{E_{max}}{e} = 3,1 \text{ eV}, E_{min}(eV) = \frac{E_{min}}{e} = 1,55\text{eV}$$

- 3. The luminous flux : $F_v = 1257 \text{ lm}$
 - Method 1: By the definition, the illuminance :

$$E_v = \frac{F_v}{A} = \frac{F_v}{4\pi d^2} = 1$$
lux

• Method 2: Luminous intensity : $I_v = \frac{dF_v}{d\Omega}, dF_v = I_v \cdot d\Omega$ et $dA = R^2 d\Omega$.

$$E_v = \frac{dF_v}{dA} = \frac{I_v}{d^2}$$

On the other hand $I_v = \frac{F_v}{4\pi} = 100 \text{lm/sr}$, so the illuminance :

$$E_v = \frac{I_v}{d^2} = 1 \text{ lux}$$

If all the flux is confined in a cone:

$$E_{v,15^{\circ}} = \frac{F_v}{d^2 \cdot 2\pi (1 - \cos \theta)} = E_v \frac{2}{1 - \cos 15^{\circ}} = 58.7 \text{lux}$$

4. The luminous intensity : $I_v = \frac{dF_v}{d\Omega} = \frac{F_v}{\Omega} = 950 \text{ lm/sr.}$ The illuminance at 20 m:

$$E_v = \frac{dF_v}{dA} = \frac{I_v d\Omega}{d^2 d\Omega} = \frac{I_v}{d^2} = 2,375$$
 lux

K. F. Ren

2019

and the received luminous flux:

$$dF_v = E_v dA = 2, 4 \times 10^{-4} \text{ lm}$$

The illuminance at 20 cm:

$$E_v = \frac{I_v}{d^2} = \frac{950}{0, 2^2} = 2,375 \cdot 10^4 \text{ lux}$$

The received luminous flux:

$$F_v = E_v dA = 2,4 \text{ lm}$$

The received flux when the detector is inclined at 30° :

$$F_v(30^\circ) = F_v \cos 30^\circ = 2,05 \times 10^{-4} \text{ lm} (à 20 \text{ m}),$$
 2,05 lm (à 20 cm)

5. The definition of the luminance :

$$L = \frac{dI}{dA\cos\theta} = \frac{d}{dA_e\cos\theta} \frac{dF_r}{d\Omega_e}$$

The definition of the solid angle $d\Omega_r = \frac{dA_e}{d^2}$ and $d\Omega_e = \frac{dA_r}{d^2}$, so

Figure 5: Relation entre les angles solides et les aires.

$$dA_e \cdot d\Omega_e = dA_r d\Omega_r$$

We deduce

$$L = \frac{dE_r}{d\Omega_r}$$

The radiance of the sun $(\theta = 0^{\circ})$:

$$L_e = \frac{500}{\frac{\pi}{4}10^{-4}} = 0,63 \cdot 10^8 \text{ W/(sr.m^2)}$$

The luminance of the sun :

$$L_v = L_e V = 56.6 \cdot 10^8 \text{ ks} \text{sr}^{-1} (\text{ou } \text{ cd} \text{.m}^{-2})$$

Exercice 2: Energy of light captured by a lens

1. Lambertian source : $I = I_0 \cos \theta$ Knowing that the solid angle of a cone with angle θ is $\Omega = 2\pi (1 - \cos \theta)$, $\Rightarrow d\Omega = 2\pi \sin \theta d\theta$ et $I = \frac{dF}{d\Omega}$, the received total flux:

$$F = \int_{\Omega} I(\theta) d\Omega = \int_{0}^{\theta_{max}} I_0 \cos \theta \cdot 2\pi \sin \theta d\theta = \pi I_0 \sin^2 \theta_{max}$$

K. F. Ren

2019

Since $\sin \theta_{max} = \frac{D/2}{\sqrt{l^2 + D^2/4}}$ and $I_0 = LS_e$

This flux is restricted in S_r with an attenuation τ :

$$F_r = \pi \tau L S_e \frac{D^2}{4l^2 + D^2}$$

2. The emittance on $S_r \ (l \gg D)$:

$$E_{sr} = \frac{F_r}{S_r} = \pi \tau L \frac{S_e}{S_r} \frac{D^2}{4l^2 + D^2} \simeq \pi \tau L \frac{S_e}{S_r} \frac{D^2}{4l^2}$$

However, $\frac{S_e}{S_r} = \frac{l^2}{(f+a)^2} \simeq \left(\frac{l}{f}\right)^2$, we obtain finally:

$$E_{sr} = \pi \tau \frac{L}{4} \frac{D^2}{f^2}$$

Exercice 3. Halogen lampe

- The electric power: P = 500 W
 - The radiant flux : $P_e = 400$ W The luminous flux: $F_v = 8000$ lm
 - 1. The luminous efficiency: $K = \frac{8000}{400} = 20 \text{ lm/W}$ The ectrical Efficiency: $\epsilon = \frac{400}{500} = 80\%$
 - 2. The area of the filament: $S = \pi dL$ The filament temperature according to Stefan's law: $T = \left(\frac{P}{\sigma S}\right)^{1/4} = 3871 \text{ K}$
 - 3. The maximum emission wavelength according to Wien's law: $\lambda_{max} = \frac{2898}{T} = 0,749 \ \mu \text{m}$ (in the visible range)
 - 4. The luminous intensity: $I_v = \frac{F_v}{\Omega} = \frac{8000}{2\pi} = 1273 \text{ cd}$

Exercice 4: Photocell

1. The kinetic energy of the electron excited by a photon:

$$E_c = h\nu - W_s = \frac{1}{2}m_e v_e^2$$

We know $W_s = 2, 2 \text{ eV} = 2, 2 \times 1, 6 \ 10^{-19} = 3, 52 \ 10^{-19} \text{ J}$ $h\nu = \frac{hc}{\lambda} = \frac{6,62 \cdot 10^{-34} \times 3 \cdot 10^8}{526 \cdot 10^{-9}} = 3.78 \cdot 10^{-19} \text{ J}.$ We have therefore:

$$v_e = \sqrt{\frac{2(h\nu - W_s)}{m_e}} = 0,24 \cdot 10^6 \text{ m/s}$$

2. The saturation current:

The number of photons of the light beam: $n_p = \frac{P}{h\nu} = 6,62 \cdot 10^{17}$ photons/s. The number of electrons emitted: $n_e = n_p \eta = 6,62 \cdot 10^{17} \times 0,008 = 5,3 \cdot 10^{15}$ electrons/s. The saturation current: $I_{sat} = n_e e = 8,4 \cdot 10^{-4}$ A=0,84 mA.

Exercice 5: Performance of a photocell

- 1. The energy of a photon: $E_p = \frac{hc}{\lambda} = 4.965 \cdot 10^{-19}$ J=3.1 eV. The energy of the electron photo-emitted : $E_e = E_p - W_s = 3, 10 - 2, 5 = 0, 6$ eV. The stop potential: $U_a = \frac{E_c}{e} = 0, 6$ V.
- 2. The kinetic energy of the electron arrived on the anode : $E_c = E_e + eU = 10, 6 \text{ eV} = 1, 7 \cdot 10^{-18} \text{J}.$
- 3. The number of photons per second: $n_p = \frac{P}{h\nu} = \frac{400 \cdot 10^{-3}}{4.965 \cdot 10^{-19}} = 8.06 \cdot 10^{17} \text{ ph/s.}$ The number of electrons per seconde: $n_e = \frac{I_{sat}}{e} = \frac{50 \cdot 10^{-3}}{1.6 \cdot 10^{-19}} = 3.25 \cdot 10^{17} \text{ electrons/second.}$ The quantum efficiency:

$$\eta = \frac{n_e}{n_p} = \frac{3.25}{8.06} = 38.8\%$$

Exercice 6: Photodiode

- 1. This is an active sensor: transformation of light energy into electrical energy by PN junction in the photodiode.
- 2. A capacitor is equivalent to a complex resistance of $R_C = 1/j \ omegaC_L$, the total resistance of two resistors in parallel

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

So we have

$$V_L = I \frac{R_L / j \omega C_L}{R_L + 1 / j \omega C_L} = K \Phi \frac{R_L}{1 + j \omega R_L C_L}$$

We know: $\omega = 2\pi f$, o the transfer function:

$$S(f) = \frac{V_L}{\Phi} = \frac{KR_L}{1 + j2\pi f R_L C_L}$$

3. The gain:

$$G(f) = |S(f)| = \frac{KR_L}{\sqrt{1 + (2\pi f R_L C_L)^2}}$$

Obviously the gain is maximum when f = 0:

$$G_{max} = KR_L$$

The cutoff frequency f_c is obtained by::

$$G(f_c) = \frac{G_{max}}{\sqrt{2}} = \frac{KR_L}{\sqrt{2}} = \frac{KR_L}{\sqrt{1 + (2\pi f_c R_L C_L)^2}}$$

where

$$f_c = \frac{1}{2\pi R_L C_L}$$

4. We see that the cutoff frequency depends on R_L and C_L , we now want the cutoff frequency to be $f'_c = 2f_{max} = 200$ kHz, donc

$$R_L = \frac{1}{2\pi f_c C_L} = \frac{1}{2\pi 200 \times 10^3 \times 80 \times 10^{-12}} \simeq 10k\Omega$$

5. The static Gain (Sensitivity) is G(f = 0), so

$$G_{stat} = KR_L = 0,35 \times 10^3 = 3500 V/W$$

The dynamic sensitivity is $G(f_{max})$ donc

$$G_{dyn} = \frac{KR_L}{\sqrt{1 + (f_{max}/f_c')^2}} = \frac{KR_L}{\sqrt{1 + 1/4}} = 3500\sqrt{\frac{4}{5}} = 3130V/W$$

6. $\Phi = \Phi_{0max} + \Phi_{1max} \sin(2\pi ft)$ $V_0 = G_{stat} \Phi_{0max} = 3500 \times 0,001 = 3,5 \text{ V}$ $V_1 = G_{dyn} (20kHz) \Phi_{1max} = \frac{3500 \times 0,1 \times 10^{-3}}{\sqrt{1 + (1/10)^2}} = 0,35 \text{ V}$ $V = 3,5 \text{ V} + 0,35 \sin(2\pi ft).$

Exercice 7: Emission Characterization of a Source

- 1. Isotropic Source:
 - (a) Isotropic Source \Rightarrow the emission indicator is constant: $I(\theta) = 1$, because the radiation is homogeneous in all directions.
 - (b) P_0 radiated in 4π steradians gives an intensity $I = P_0/4\pi$ (W/sr).
 - (c) At a distance of d, the illuminance is $E = F_e/(4\pi d^2)$ (W/m²)
- 2. Spherical source:
 - (a) The emittance (exitance) of the source is $M_e = \sigma T^4$.
 - (b) The total flux radiated by the source is $F_e = 4\pi R^2 \sigma T^4$.
 - (c) At a distance of d, the irradiance is $E = P_0/4\pi d^2 = MR^2/d^2$.
 - (d) The source radiates as a black body, it emits at most for $\lambda_{max} \approx 3000/T(K)$

Exercice 8: Performance of a detector

1. The relationship between current response and quantum efficiency is: $R = \eta \cdot e\lambda/hc$. The curve of $\eta(\lambda)$ and corresponding $R_{\lambda}(\lambda)$ are indicated in the figure. If λ is in micron, this relation gives

$$R \approx 0.8056 \eta \lambda (A/W)$$

This is a straight line 0.8056λ (approximatively 0.8λ), Theoretical response of a unit efficiency.

$\lambda(\mu m)$	0.8	1.0	2.2	3.0	3.6	4.2	5.1
η	0.12	0.61	0.75	0.89	0.83	0.63	0.25
$R(\lambda)$	0.08	0.50	1.33	2.15	2.40	2.13	1.03

- (a) The sensitivity domain is determined from the area where $R_{\lambda} > R(max)/2 \approx 1.2$ A/W, ce which is in the range of $2-5 \ \mu m$ (cutoff wavelength $\approx 5 \ \mu m$).
- (b) The peak wavelength: $\approx 3.6 \mu \text{m}$.
- (c) The max response is of the order 2.4 A/W.

Figure 6: Tracé et mesures pour exercice Rendement.

- (d) The cutoff wavelength is $\lambda_c = 5.1 \ \mu \text{m}$.
- 2. $R_{\lambda}(\lambda)$ is a straight line: $R_{\lambda}(\eta = 1) = \frac{e\lambda}{hc} = 0.8\lambda$ (A/W) (λ in μ m). he commercially available detector has a current response of 0.95 A/W at peak to 1.55 μ m. which corresponds to a quantum yield of $\eta = 0.95/(0.8 \times 1.55) = 77\%$, which is very correct. The detector surface is $A = \pi 0.05^2/4 \approx 1.96 \times 10^{-3}$ cm². $D_* = \sqrt{A}/NEP$. For $NEP = 8 \times 10^{-15}$ W/Hz^{1/2}, we find $D^* \approx 5.5 \times 10^{12}$ cm.Hz^{1/2}/W, CQFD.

Exercice 9: Filter

- 1. This source is rather orange without filter (slope of the rising spectrum when *lambda* increases) and red with the filter.
- 2. The color The filter is square, which allows to calculate the total power received from the source: for $\lambda = 0.65 \ \mu m$, $P_{\lambda} = 3.5 \times 10^{-8} \ W/\mu m^{-1}$. The power selected by the filter (transmission 80% est donc $P = 3.5 \times 10^{-8} \times 0.80 \times 0.05 = 1.4 \times 10^{-9} \ W$.
- 3. The answer in Volts will then be: $R_v = 1.4 \times 10^{-9} \times 5 \times 10^5 = 700 \ \mu\text{V}$, give a signal on noise: S/N = 117.
- 4. The NEP of the detector is $\sigma/R = 1.2 \times 10^{-10}$ W.
- 5. The cutoff frequency of the detector is $f_c = 1/2\pi\tau = 15.9$ Hz. When the detector is modulated at f = 1000/60 = 16.7 Hz, the response is reduced by a factor $1/\sqrt{1 + (f/f_c)^2} = 0.69$, and passes at 3.4×10^4 V/W.