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In order to deal with the interaction of an electromagnetic wave with large homogeneous objects of
arbitrary shape with smooth surface we develop the ray theory of waves (RTW) which is composed
of the vectorial complex ray model (VCRM) and VCRM based singularity theory. By introducing
the wavefront curvature as an intrinsic property of rays, VCRM permits to predict the amplitude
and the phase of field at any point rigorously in the sense of ray model. Its combination with the
singularity theory remedies the discontinuity in the ray model. In this letter, the wavefront equation,
key physical law of VCRM describing the relation between the wavefront curvatures of the incident
wave and the refracted/reflected wave, is derived for the most general case of three dimension
scattering. The strategy of the calculation scheme in RTW is described. Typical applications to the
prediction of the rainbow patterns of a spheroidal drop are presented. The comparison to a rigorous
numerical method, multilevel fast multipole algorithm, shows that RTW can predict very fast and
precisely the scattered field even in the vicinity of caustics.

Introduction – The interaction of waves (light, elec-
tromagnetic or acoustic waves) with large macroscopic
objects concern great number of research domains.
Though the fundamental laws (Maxwell equations, etc.)
have been well established, their applications to practi-
cal problems are always challenging. For example, the
scientific community has not efficient methods to predict
with precision the scattered field of a wave by objects
of complex forms and size much larger than the wave-
length. This fact has important impact on the scien-
tific research and the engineering design. In fact, re-
searchers have made great efforts to improve this sit-
uation. Many sophisticated numerical techniques have
been developed in the field of electromagnetic compu-
tation [20, 25], such as the multilevel fast multipole al-
gorithm (MLFMA)[26]. These methods can be applied
to objects of complex shape and composition but they
are resource and time consuming. The calculable size
is also limited (less than 200 wavelengths for dielectric
objects[24]). Some rigorous solutions exist for the parti-
cles of simple shapes (spheroid, ellipsoid), but the calcu-
lable size is still at the same order as the pure numerical
methods. Different approximate methods have also been
investigated to deal with specific problems or in specific
conditions[2, 7, 17, 18, 25]. For instance, the catastrophe
theory provides a powerful tool to study the morphology
of the scattering patterns near caustics and its classifi-
cation by using polynomial functions[2, 4]. So, we are
still lack of efficient methods to simulate directly with
precision the scattering patterns of real large objects.

The Ray Theory of Waves (RTW) presented in this
letter intends to reply this demand. It consists of the
Vectorial Complex Ray Model (VCRM)[12, 19] and its
combination with singularity theory[6] by using the uni-
form approximation[5]. Its four principles are: (i). All

waves are described by the vectorial complex rays and
each ray possesses three properties: wave vector k, com-
plex electric vector E and wavefront curvature Q (Fig.
1). (ii). All properties of a ray after its interaction with
a dioptric surface are calculated by the wavefront equa-
tion, the vectorial Snell law and the Fresnel formulas in
wave vector components. (iii). In the region without
singularity, the total field is the summation of the com-
plex amplitudes of all the rays at that point, (iv). In the
vicinity of singular points (caustics, critical angles, par-
ticle surface, . . . ), the singularity theory along with the
uniform approximation will be applied. The physical op-
tics (PO)[9, 27], the diffraction integration[21], etc. are
examples of the special cases. The first three principles
form VCRM, key progress on the interaction of a wave
with a large non-spherical object, and the fourth one is
based on the results of VCRM.

FIG. 1. Ray tracing in RTW.

Vectorial Complex Ray Model – The wavefront
equation describes the relation between the wavefront
curvatures of the incident wave and the refracted or re-
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flected wave as function of the curvature of the diopter.
It is at the heart of VCRM and we will derivate it for
three dimension (3D) scattering.

Consider a ray incident on a curved surface Γ (blue in
Fig. 2) at a point O. When an adjacent ray passing by
the point A on the incident wavefront Σ (black in Fig. 2)
reaches the diopter at H, the ray refracted at O arrives
at E on the refracted wavefront Σ′ (green in Fig. 2). We
note B as the projection point of A on the tangent plane
of Σ, C and G the projection points of H respectively on
Γ and Σ’. The curvature of the surface Σ is described by
its curvature matrix Qi in the base (û1, û2). Similarly,
the curvatures of Σ′ and Γ are described respectively by
their curvature matrices Qr and C in the corresponding
bases (ŝ1, ŝ2) and (v̂1, v̂2) (not presented in the figure
for clarity). According to the differential geometry, in
the vicinity of the tangent point, the distance between
the point on the curved surface and the projected point
on the tangent surface can be expressed as function of
the curvature matrix. So, the infinitesimal distances δi =
AB, δr = HG and δc = HC are given by

δi =
1

2
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−−→
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−−→
EG and tc =

−−→
OC. The prime T

stands for the transpose of a matrix. Note that the quan-
tities δ and t are all infinitely small, but the differential
symbol d of dδ and dt is omitted here for clarity.
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FIG. 2. Schema of the wavefronts and the diopter: an arbi-
trary wave incident on a curved surface.

The phase difference between the two wavefronts Σ and
Σ′ being constant, so kiAH = krOE. On the other hand,
from the geometry we have AH = δi + tc · k̂i − δcn̂ · k̂i

and OE = δr + tc · k̂r − δcn̂ · k̂r. These lead to

ki(δi + tc · k̂i − δcn̂ · k̂i) = kr(δr + tc · k̂r − δcn̂ · k̂r)

The terms kitc · k̂i and krtc · k̂r are independent of
any curvatures, so we have ki,τ = kr,τ . This is also true
for the reflected ray ki,τ = kl,τ . We establish thus the
Snell law in vector form: the tangent components of the
incident, reflected and refracted wave vectors are equal.

ki,τ = kl,τ = kr,τ (1)

The rest of the equation gives rise to

kitiQit
T
i − krtrQrt

T
r = n̂ · (ki − kr)tcCtTc (2)

We express now ti and tr as function of tc by using
the projection relations

ti = Pitc +O(ti), tr = Prtc +O(tr) (3)

where Pi and Pr are the projection matrices of the diopter
base (ŝi1, ŝ

i
2) respectively on the incident and refracted

wavefront bases (û1, û2) and (v̂1, v̂2)

Pi =

(
ŝi1 · û1 ŝi1 · û2

ŝi2 · û1 ŝi2 · û2

)
, Pr =

(
ŝi1 · v̂1 ŝi1 · v̂2

ŝi2 · v̂1 ŝi2 · v̂2

)
(4)

Eq. (2) is then written as

tc
(
kiPiQiPT

i − krPrQrPT
r

)
tTc = n̂ · (ki − kr)tcCtTc (5)

tc being arbitrary, we deduce finally the wavefront
equation

krPrQrΘ
T
r = kiPiQiPT

i + Cn̂ · (kr − ki) (6)

The wavefront equations given in [11] and [14] (sec. 4.2)
correspond to the special case where one of the principal
direction is in the incident plane. In the case of scat-
tering in a symmetric plane, Eq. (6) is reduced to two
scalar equations which are the same as those obtained by
Hamilton optics in [22] (p 49) and [9] (p 186):

krκr1 = kκi1 + (krn − kin)κc1 (7)

k2rn
kr

κr2 =
k2in
ki
κi2 + (krn − kin)κc2 (8)

where the indice 1 and 2 indicate respectively the prin-
cipal curvatures in the directions perpendicular and par-
allel to the symmetric plane.
The two equations (1) and (6) tell all what we need

for the vectorial complex ray tracing: the directions of
the rays and their wavefront structure. With some sim-
ple considerations described below, we can calculate the
complex amplitude of all rays at any point.
The amplitude of a ray, in the propagation of a wave

and its interaction with an object, is affected by two fac-
tors: the Fresnel factor εX,p and the divergence factor D.
The amplitude of the wave at a point M is then

A = A0|εX,p|
√
D (9)

where A0 is the amplitude at the first incident point. εX,p

of pth order emergent ray (Fig. 1) is given as

εX,p =


rX,0 p = 0

tX,0tX,p

p−1∏
q=1

rX,q p ≥ 1
(10)

rX,q and tX,q are respectively the Fresnel reflection and
refraction coefficients of polarizationX (⊥ or ∥) at the qth
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interaction and given in RTW as function of the normal
components kin and krn, respectively, of the reflected and
refracted wave vectors

r⊥ =
kin − krn
kin + krn

, r∥ =
m2kin − krn
m2kin + krn

(11)

t⊥ =
2kin

kin + krn
, t∥ =

2mkin
m2kin + krn

(12)

The divergence factor is

D =

∣∣∣∣κG2

κ′G1

· κG3

κ′G2

· · · κGM

κGq

∣∣∣∣ (13)

where κGq and κ′Gq are respectively the Gaussian
curvatures of the wavefronts of the incident and re-
fracted/reflected waves at qth interaction point, and κGM

the Gaussian curvature of the wavefront at the point M .
The relation between the principal wavefront curvatures
at two successive points are given by

κµ,q+1 = 1/(1/κµ,q − d) (14)

where µ = 1, 2 and d is the distance between the two
points.

The phase of a ray may change due to the reflection
ΦF , the optical path ΦP and the focal lines Φf [6, 23].
ΦF is determined by the argument of the Fresnel factor

ΦF = arg(εX,p) (15)

ΦP is computed directly according to the optical path.
Let ri and ki be respectively the position vector and the
wave vector of the incident wave at the ith interaction
point, ΦP of a ray after q interactions with the particle
is given by

ΦP = −k1 · r1 + k′
q · rq +

q−1∑
i=1

ki+1 · (ri+1 − ri) (16)

where k′
q is the wave vector of the emergent ray.

Each time a wave passes a focal line (Fig. 1) the phase
jumps a value of π/2 [19, 23]. This phenomenon corre-
sponds to the sign changes of the wavefront curvatures,
so the calculation of Φf in VCRM is just a matter to
count the number Nf of sign changes of the wavefront
curvatures, thus

Φf = Nf
π

2
(17)

If the incident wave is not a plane wave, its phase Φi at
the first incident point should be counted. So the phase
of a ray at the observation point M is

Φ(M) = Φi +ΦF +ΦP +Φf (18)

Eqs. (9)-(18) permit to calculate the amplitudes and
the phases of all rays by ray tracing (Fig. 1). Finally,

the properties of all the rays at any point are determined
by Eqs. (1), (9) and (18).
Singularity correction – VCRM improves signifi-

cantly the flexibility and the precision of classical ray
model, but it still fails to predict correctly the field in
the vicinity of the singularity points. However, it can
calculate the complex electric field at any point rig-
orously in the sense of ray model and directly for a
given object. The sigularity theory[6] and the uniform
approximation[5] can then be applied for the remedy. By
a heuristic example, we have shown[27] that VCRM per-
mits to reveals clearly the origin of the imprecision in
the Airy theory and by replacing the polynomial func-
tion with directly calculated field, our method predicts
very good results compared to the rigorous theory.
Thanks to the rapid development of computing tech-

nology, the polynomial or other approximate functions
used in the singularity theory[4] can be replaced by the
directly calculated field of VCRM. This should improve
the precision and the flexibility in the singularity correc-
tion. This step needs a strategy special to RTW.
Strategy of RTW – In VCRM the forward ray trac-

ing is used, i.e. the directions of the emergent rays are
determined by the incident rays. To obtain the field at a
given point or a given direction, a special strategy is to
be employed.
Traditionally, a physical problem is considered solved

if the relation between a physical quantity Y and its
variables x = {xi}(i = 1, 2, · · · ) is established rigor-
ously or approximately in the form Y = F(x;α), where
α = {αj}(j = 1, 2, · · · ) are the problem related parame-
ters and the operator F can be in usual or special func-
tions, a differential or integral operator, or their combi-
nation. The Mie theory and Airy theory are two typical
examples. Otherwise, we establish an implicit relation
between Y and x in the form F(Y,x;α) = 0 then solve
the equation numerically. This is largely used in the elec-
tromagnetic computation.
RTW uses neither of the two strategies. We express Y

and x through a set of intermediate variables t = {ti}:
Y = F1(t;α) and x = F2(t;α) and calculate Y and x
in a relevant range of t, then establish the relationship
between Y and x with numerical technique. For instance
to obtain the scattering field, we calculate the amplitudes
and the phase Y = (A,Φ), and the directions of all the
emergent rays x = (θ, ϕ) as function of the incident rays
t = (θi, ϕi) and the particle properties α. The interpola-
tion is applied to calculate the total complex amplitude
of all rays in the interested region with[27] or without
[13] wave effect correction.
Examples of applications – VCRM has been applied

successfully to the simulation of the rainbow pattern of
an oblate ellipsoid [12]. But two decernible discrepancies
are observed when compared to the experimental results
(Fig. 6 in [12]). The first in the vicinity of the caustics
is caused by the wave effect. We will show that the com-
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bination of VCRM with PO used in [27] for a spherical
particle can be extended to a non-spherical particle. The
second in the large scattering angles is due probably to
experimental uncertainty. So we will compare the results
of RTW with those of a rigorous numerical method.

TABLE I. Peak positions (in deg.) of supernumerary bows of
a sphere (refractive index m = 1.333, λ = 0.6328 µm).

a = 50 µm a = 500 µm
K Airy RTW Debye K Airy RTW Debye

0 139.50 139.47 ∗ 139.47 0 138.26 138.26 ∗ 138.26
1 142.98 142.88 142.87 1 139.01 139.00 139.00
2 145.41 147.24 147.23 21 145.13 144.98 149.99
4 149.37 149.01 148.99 41 149.14 148.81 148.81
6 152.72 152.14 152.12 61 152.53 151.97 151.97
8 155.73 154.91 154.88 81 155.55 154.76 154.76

10 158.51 157.43 157.39 101 158.34 157.29 157.29
12 161.10 159.77 159.72 121 160.95 159.64 159.64
∗ calculated by combination of VCRM and PO.

To ease the understanding, we begin with the classi-
cal problem – rainbow of a spherical drop. After the
first satisfactory explanation of Descartes[10], Airy pro-
posed a theory to calculate the scattering pattern of a
rainbow[3]. Since almost two centuries, his theory has
been studied by many researchers from different points
of view[1, 10]. At the same time scientists have been won-
dering its precision from the beginning[8, 10] and tried to
improve it[15, 16]. We have shown recently that by using
the amplitude and the phase calculated with VCRM our
method predict very precisely the rainbow patterns[27].
It is shown further in Tab. I that pure VCRM permits
to predict very precisely all the supernumerary peaks ex-
cept the main one (K = 0) which needs the combination
of VCRM and PO. Tab. I reveals also the fact that,
contrary to what believed commonly[23], the precision of
Airy theory is almost independent of the particle size if
observed at given angles.

To demonstrate the applicability of RTW to objects
of any shape, we show the scattering patterns in the
first and second rainbows of an oblate spheroid calcu-
lated by MLFMA and RTW in Fig. 3, top half for
MLFMA and bottom half for VCRM. The computation
for MLFMA[26] with an angle resolution of 0.1◦ has taken
997 GB memory (Intel Xeon Platinum 8276 CPU) and 40
hour CPU time with 160 threads. The computation time
for VCRM on PC (Intel i9-13900ks, RAM 32 GB) is 9.4
min. for an angle resolution of 0.01◦. The agreement of
the two methods are very good including the fine struc-
ture except in the vicinity of the caustics. This could
be remedied by PO with 2D diffraction integration that
we are working on. Instead, a quantitative comparison
of the scattering diagram on the symmetric plane ψ = 0
is given in Fig. 4. The result of RTW has been calcu-
lated by simple integration. It is clear that RTW is in
good agreement with MLFMA, not only in the vicinity

FIG. 3. Comparison of the scattering patterns calculated by
VCRM and MLFMA for an oblate spheroid of semi-axes a =
b = 100 µm, c = 90 µm of water m = 1.333. The incident
plane wave of wavelength λ = 0.6328 µm is along x-axis.

of the rainbow angles but also in the Alexander region.
The discrepancy around 160◦ is due to 2D caustics which
needs 2D integration.

Conclusions – The fundamentals and the strategy of
the Ray Theory of Waves for scattering of large non-
spherical objects with smooth surface are presented. The
efficiency and the precision of RTW are demonstrated by
comparison of the scattering patterns of an ellipsoidal
drop calculated by RTW and MLFMA. The singularity
correction for 3D scattering is to be developed[6, 21]. The
applications of RTW in the domains concerning the in-
teraction of waves with objects of irregular shape are also
to be explored.
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complex ray model and application to two-dimensional
scattering of plane wave by a spheroidal particle. Opt.

Lett., 36(3):370–372, 2011.
[20] X. Q. Sheng and W. Song. Essentials of computational

electromagnetics. Wiley, Singapore, 2012.
[21] J. J. Stamnes. Wave in focal regions. Adam Hilger, in-

stitute of physics publishing edition, 1986.
[22] J. L. Synge. Geometrical optics, an introduction to

Hamiltons method. Cambrige University Press, 1937.
[23] H. C. van de Hulst. Light scattering by small particles.

John Wiley & Sons, New York, 1957.
[24] Y. Wu, M. Yang, X. Sheng, and K. F. Ren. Computa-

tion of scattering matrix elements of large and complex
shaped absorbing particles with multilevel fast multipole
algorithm. J. Quant. Spectrosc. Radiat. Transfer, 156:88–
96, 2015.

[25] Y. M. Wu and W. C. Chew. The modern high frequency
methods for solving electromagnetic scattering problems.
Progress ElM Res., 156:63–82, 2016.

[26] M. L. Yang, B. Y. Wu, H. W. Gao, and X. Q. Sheng.
A ternary parallelization approach of mlfma for solving
electromagnetic scattering problems with over 10 billion
unknowns. IEEE Transactions on Antennas and Propa-
gation, 67(11):6965–6978, 2019.
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