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Chapter 7 
Vectorial Complex Ray Model for Light 
Scattering of Nonspherical Particles 

Kuan Fang Ren and Claude Rozé 1 

7.1. Introduction 

Geometrical optics is a very simple and intuitive method for treating the interaction of an 
object with light or electromagnetic waves when the dimension of the object is much 
larger than the wavelength [1, 2]. One of its main advantages over the other methods is 
that it can be applied to objects of complex shape, which are hard or even impossible to 
be dealt with by rigorous theories or most numerical techniques. The variable separation 
methods based on the solution of Maxwell equations (or its equivalents) are limited to 
objects that can be described in a coordinate system of the same geometry, such as sphere, 
spheroid, ellipsoid, or circular or elliptical cylinder. Even in these “simple” cases, the 
numerical calculation remains another obstacle. Except for the sphere and the infinite 
circular cylinder, the calculable size of the scatterer can hardly exceed a few tens of 
wavelengths. Numerical methods such as T matrix, discrete multipole approximation, etc., 
can be applied to non - spherical particles, but the size parameter of the scatter is also 
severely limited [3].  

Many researchers have contributed to the improvement of geometrical optics. Some take 
into account the forward diffraction or other particular wave effects (Airy theory for the 
rainbow [4] and Marston’s model for the critical scattering [5]). Others combine directly 
geometrical optics with the electromagnetic wave method [6]. However, in these studies 
interference effects of all order rays are rarely taken into account. We have shown that, 
by taking into account the interferences between all scattered rays, as well as forward 
diffraction, we can predict correctly the scattering diagram of a sphere in all directions  
[7, 8], although the scattering diagram near the critical and rainbow angles is still to be 
improved. But, as soon as the geometrical optics is extended to a three - dimensional (3D) 
object of irregular shape, three difficulties are encountered: (1) calculation of local 

                                                      

Kuan Fang Ren 
Rouen University, CORIA / UMR 6614, CNRS – INSA & Université de Rouen Normandie, 
Saint Etienne du Rouvray, France 



  Advances in Optics: Reviews. Book Series, Vol. 1 

 204

divergence factors for smooth dielectric surfaces; (2) phase shift due to focal lines; and 
(3) determination of reflection and refraction angles. If the last one concerns just a 
technical realization, the two others are inherent problem of ray models. To overcome 
these obstacles, we have been developing a so - called Vectorial Complex Ray Model 
(VCRM) in which the wave front curvature is introduced as an intrinsic property of a ray 
[9]. The calculation of the divergence factor in VCRM is just the ratio of the Gauss 
curvatures of the wave front surfaces and the phase shift due to the focal line is a count of 
the sign changes of the wave front curvature radii [10]. The direction of a ray and the 
Fresnel coefficients are determined simply by the tangent and normal components of the 
wave vector. The total scattered field is the superposition of the contributions of all 
complex rays. This model makes it possible to calculate the scattering of any irregularly 
shaped 3D objects illuminated by a plane wave or a shaped beam. In this chapter, we 
present the fundamentals of VCRM for an irregularly shaped 3D object, its applications 
to the scattering of non - spherical particles and characterization of liquid droplets in fluid 
mechanics. 

The structure of the chapter is as follows. In Section 7.2, the fundamentals of geometrical 
optics and its applications to the scattering of a sphere or an infinite circular cylinder are 
presented in a way to ease the understanding of VCRM. Section 7.3 is devoted to the 
description of the Vectorial Complex Ray model, including its fundamental laws and its 
applications in simple cases of image formation to illustrate its power. The application of 
VCRM in the light scattering by an elliptical cylinder and a spheroidal particle in a 
symmetric plane is given in Section 7.4. The last section is the conclusions. 

7.2. Fundamentals of Geometrical Optics 

In this section we will present the essence of the geometrical optics (GO), or ray model in 
general sense, then apply it in the light scattering by particles and show that this model 
can predict very precisely the scattering diagram of a sphere or an infinite cylinder of 
circular section. These simple cases are very helpful to understand the Vectorial Complex 
Ray Model. 

In ray models, a wave is considered as bundles of rays and each ray is characterized by 
four parameters. 

The direction is usually described by an angle relative to the normal of the diopter. This 
is sufficient since the incident, reflected and refracted rays remain all in the same plane, 
called incident plane which is defined by the incident ray and the normal of the diopter. 

The amplitude of the wave represented by the ray changes each time it is reflected or 
refracted by a diopter. It decreases when the light propagates in an absorbing medium. 
The amplitude evolves also along its path when the wave is convergent or divergent. 

The polarization state of the light representing the vibration direction of the electric field 
is essential in the determination of the amplitudes of reflected and refracted waves by 
Bresnel coefficients. 
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The phase of the ray plays an important role in the interference of different orders if the 
coherent length of the incident wave is larger than the dimension of the particle. The 
interference can be constructive or destructive according to the phases of the rays. The 
three main factors which contribute to the phase of a ray are the optical path, the focal 
line/point and the Fresnel reflection coefficients.  

We will see that careful count of these parameters permits to describe well the interaction 
of light with particle. A detailed description of these parameters will be given later. A 
special attention is payed to the scattering of light by particle. The sphere and the infinite 
circular cylinder are taken as examples to show that GO can be applied to deal with the 
scattering of light with good precision if all the properties are correctly counted. 
Unfortunately, they are also the only cases that can be treated “rigorously” in the scope of 
classical ray model. The barrier relies on the fact that in the classical ray model there is 
no parameter to take into account the divergence/convergence of the wave the rays 
represent. This will be possible with VCRM described in the next section. 

7.2.1. Snell Laws and Fresnel Formulas 

In the regime of ray model, the wavelength is much greater than the dimension of the 
object, the diopter surface can be considered as a plane tangent to the surface (here the 
convergence of the wave is not concerned). The directions of the reflected and refracted 
rays are related to that of the incident ray and the relative refractive index between the two 
media according to the Snell law. 

 
i l  , (7.1) 

 sin sini rm  , (7.2) 

where i, l and r are the incident angle, the reflection angle and the refraction angle 
respectively (Fig. 7.1).  

The amplitude of the reflected wave and the refracted wave relative to the incident 
amplitude are given by the Fresnel formulas according to the state of polarization: 
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Fig. 7.1. Schema for derivation of Fresnel law. 

The ratios of reflected and transmitted energy flux are described respectively by the 
reflectivity 

XR  and the transmissivity 
XT : 

 2| |X XR r , (7.7) 

 2 cos
| |

sin
r

X X
i

T m t



 , (7.8) 

where the index X stands for the state of polarization: the electric field parallel  ു	 or	
perpendicular	 to the incident plane. An attention should be paid to the fact that the 
transmissivity is not equal to the square of the amplitude ratio of the refracted 
(transmitted) wave to the incident wave. 

7.2.2. Light Scattering by a Sphere and a Circular Cylinder 

The geometrical optics is well known as a very simple and instructive method in dealing 
with the reflection and refraction of light from an object and widely used in the image 
formation. It has also been applied in some techniques for optical particle metrology, such 
as in the prediction of the positions of rainbow or the phase shift in the phase Doppler 
Anemometry. However, since longtime, the geometrical optics has been considered 
applicable only in narrow region in forward direction [11, 12]. In the early 2000’s we have 
shown that the geometrical optics is capable to predict the scattering diagram of a sphere 
in all direction if the interference and diffraction effects are appropriately counted. This 
method can be easily extended to the scattering of a shaped beam [7, 8], or a multilayered 
sphere [12] or a cylinder [13]. However, it cannot be applied or extended to the particles 
without circular symmetry [14]. This will be the subject of the next section. 

We deal with the scattering of plane wave by a homogeneous sphere and an infinite 
circular cylinder at normal incidence. These are the simplest scatterers, one in two 
dimensions and the other in three dimensions. Thanks to the symmetric property of the 
problem, the calculations of the deviation of the rays, the phases due to the optical path 
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and the amplitude ratios of reflection and refractions are the same at each interaction. 
These three aspects common to the two kinds of particle will be dealt with in the first 
subsection. The particular problems related to the shape of the particle, such as the phase 
due to the focal line, the divergence factor and the calculation of the total field will be 
discussed in the two subsections which follow. 

7.2.2.1. Deviation of Rays on Particle Surface 

Consider a particle having a circular section of radius a  and refractive index m illuminated 
by a plane wave as shown in Fig. 7.2. The particle can be a sphere or an infinite circular 
cylinder of axis perpendicular to the plane of paper. We note the order of the emergent 
rays by p which indicates the emergent rays after p + 1 interactions with the particle 
surface. So the reflected ray corresponds to the order p = 0, the order of the first refracted 
rays is 1, and etc. Due to the symmetry of the problem, the angle of any emergent rays 
with the normal of the particle surface is constant and equal to the incident angle. The 
angle between any rays in the particle with the normal of the surface is also constant and 
equal to the refraction angle. Here we adopt the notations of van de Hulst [1] and note the 
angle between the incident ray and the tangent plane by τ and the angle between refracted 
ray and the tangent plane by τ′. They are related to the incident angle i and the refraction 
angle r by τ = π/2 − i and τ′ = π/2 − r. 

 

Fig. 7.2. Ray in a spherical/circular cylinder. 

When a ray arrives at the surface of the particle, the reflected ray turns in the 
counterclockwise direction of an angle 2τ. The refracted ray of order p turns in clockwise 
direction an angle equal to p times 2τ′. The deviation angle is therefore given by 

 2( ')p    . (7.9) 

However, in practice, the scattered light is observed in 0 to 360°. More particularly, the 
scattering angle is usually scaled between 0 to 180° due to the symmetry of the sphere and 
the circular cylinder, and given by following relation  
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 2 ( ') 2p p pq p k      , (7.10) 

where kp is the integer representing the times the emergent ray crosses the x axis and qp 
takes + 1 or −1. 

7.2.2.2. Amplitudes of Reflected and Refracted Rays 

When a ray interacts with the surface of the particle, it is usually divided into two parts: 
reflected and refracted rays. The amplitudes of the reflected and refracted wave depend 
on the incident angle and the polarization of the incident wave. The ratios of the reflected 
and refracted wave amplitudes to the incident one are calculated by the Fresnel formula 
(7.3) - (7.6). 

In the case under study, the Fresnel coefficients are constant for all orders of rays since 
the incident and refraction angles of all orders are the same. The reflection ratios on the 
outside of the particle surface are r٣ and r∥ respectively for the two polarizations. The 
reflection ratios on the internal surface are the same as the first reflection, but the sign of 
both ratios are reversed, i.e. the two reflection ratios are respectively −r٣ and −r∥. All 

orders of rays enter and exit one time the particle surface, so the refraction ratios are 21 r 	

and 21 r  . In summary, the ratio of the amplitude of the emergent wave of order p to the 

amplitude of the incident wave is given by 
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where rX stands for the reflection ratio of perpendicular polarization r٣ or of parallel 
polarization r∥.	

7.2.2.3. Phases of Rays 

To take into account the interference between different orders or rays, the phase of the 
rays must be counted. The phase shifts of a ray can be classified into three kinds [1].  

1. Phase due to reflection and refraction ΦR: It is well known that when a wave is reflected 
on the surface from optically thinner medium to optically denser medium, there is a half 
- wave loss. In fact, this is true only when the incident angle is small. In more general 
case, this kind of phase shift is accounted in the Fresnel coefficients. When the total 
reflection occurs, the Fresnel coefficients are complex and the phase shift is to be deduced 
from the complex values of the coefficients. 

2. Phase due to optical path ΦP: This type of phase shift is due to the difference of optical 
path of rays and evaluated relatively to a reference. The usual reference taken in the 
literature and chosen here is the virtual ray which (i) propagates in surrounding medium 
(without any particle), (ii) arrives at the center in the same direction as the incident ray, 
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and (iii) exits in the same direction as the emergent ray. Therefore, the optical path of the 
reflected ray (p = 0) has a shorter path than the reference ray. This difference is equal to 
2asinτ. Thus it has the positive phase shift equal to 2kasinτ. On the other hand, the rays 
of order p ≥ 1 undergo p1 reflections in the particle. The distance between two successive 
interactions of a ray with the particle surface is 2asinτ′, so the supplementary optical path 
relative to the reflection ray p = 0 is equal to 2apmsinτ′. Therefore the phase shift due to 
the optical path is 

  2 sin sinP ka pm     . (7.12) 

3. Phase due to focal lines ΦF: When a ray passes through a focal line, its phase advances 
by π/2[1]. The total phase shift due to focal lines depends on the order of the ray, the 
position of the ray and the shape of the particle. To illustrate the divergence and 
convergence of the bundle of rays, the trajectories of two adjacent rays impinging on a 
particle at different position are shown in Fig. 7.3. The focal lines of the rays (times the 
rays cross) in the plane of paper in Fig. 7.3(a) for p = 0 to 3 are respectively 0, 1, 1, 2 
while the corresponding focal lines in Fig. 7.3(b) are 0, 1, 2, 3. In the cases of plane wave 
scattering by an infinite circular cylinder or a sphere, this phase shift can be calculated 
analytically according to the deviation of the rays. The details of the calculation will be 
given later in this section. 

  
(a)                                                                         (b) 

Fig. 7.3. Rays in a circular section. 

The total phase of an emergent ray of order p is the summation of the three types: 

 p R P F    . (7.13) 

The two first phase shifts are the same for an infinite circular cylinder and a sphere while 
the last one depends on the shape of the particle. When the incident wave is not a plane 
wave, the phase of the incident wave must be counted also. 
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7.2.2.4. Scattering of an Infinite Circular Cylinder 

When an infinite circular cylinder is illuminated by a plane wave, the scattering can be 
dealt with by tracing of rays in the circular section perpendicular to its symmetric axis. 
The waves being converged or diverged only in one direction, the phase shift due to the 
focal lines is given by [1] 

 
1

(1 )
2 2F p s
       

, (7.14) 

where s is the sign of the angle derivative dθp/dτ that will be discussed later in this section. 

When a wave arrives on a curved surface it will be converged or diverged. The amplitude 
of the reflected and the refracted wave will change consequently. This variation is 
described by the divergence factor according to the balance of the energy.  

To determine the divergence factor, we consider an incident beam of section dAi 
illuminating the particle surface of an area dA = adτdz. All the flux in the beam spreads, 
after interactions with the particle, into an area dAs in far distance r such that dAs = rdθdz. 
Suppose that the intensity of the ray in far field is Ip(θ), then according to the energy 
balance we have  2

0 , sinX p pI a d dz I rd dz     . It follows that the scattered intensity 

of order p is given by 
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where 2
,X p  is the coefficient related to the reflection on and transmission through the 

particle surface determined by the Fresnel formulas according to Eq. (7.11). The 
divergence factor D is defined by 
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The derivative dθ/dτ is deduced from Eq. (7.9) and the Snell law (7.2), and is given by 
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The divergence factor is therefore  
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In the special case of external reflection (p = 0), the divergence factor is simplified to 
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cos

2
iD


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It is independent of the refractive index as it should be. 

7.2.2.5. Scattering of a Sphere 

When a sphere is illuminated by a plane wave, the trajectories of rays are symmetric 
around the diameter along the incident direction and can be treated by ray tracing in the 
circular section. The calculation of the scattering angle and the phase due to the optical 
path are the same as for a circular cylinder discussed above. But the phase due to the focal 
points/lines and the divergence factor are different. 

The focal lines in the scattering of a plane wave by a sphere can be classified into two sets 
according to van de Hulst [1]. The first set, noted by set a, is due to the intersection of two 
adjacent rays in a meridional cross section. The full focal curve is a circle around the axis 
in a plane perpendicular to the axis. The phase shift due to these focal lines of a ray 

F a  
is the same as for a circular cylinder and given by Eq. (7.14). For a spherical particle, the 
point where a ray interacts the axis is a focal line, noted as set b, because corresponding 
rays in other meridional sections have the same point of intersection. The full focal line is 
the full axis, both before and beyond the sphere. The phase due to these focal lines are 

 1
2 (1 )

2 2Fb p pk q
        

, (7.20) 

where kp and qp are determined from Eq. (7.10). The total phase shift due to the focal lines 
of the ray of order p is the summation of the Fa and Fb. 

To determine the divergence factor of a sphere, we consider an incident beam of section 
dAi illuminating an area dA = a2cosτdτdϕ on the sphere. All the flux in the beam, after 
interaction with the particle, spreads into a solid angle dΩ which corresponds to a surface 
dAs = r2dΩ = r2sinθdθdϕ in far distance r from the sphere. According to the balance of 
energy, the scattered intensity of order p is given by 

 
2 2 2

, 0 2
0 ,2 2

sin cos
( )

sin
X p

p X p

I a d d a
I I D

r d d r

    
 

  
  , (7.21) 

where the divergence factor D is defined by 

 
sin cos

sin | / |
D
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The derivative /d d   is given in Eq. (7.17). We find finally the divergence factor  of 
order p in terms of incident and refraction angles as follows 
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In the special case of the external reflection (p = 0), the deviation angle 2 i    , the 
divergence factor is a constant equal to 1/4. The deviation angle of the refraction ray is 

2( )r i    , the divergence factor for the refracted ray p = 1 is written as 
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These results will be applied in the next section to check the formulas of VCRM. 

7.2.3. Comparison of Scattering Diagrams with Lorenz - Mie Theory 

In this section we will present some scattering diagrams calculated by geometrical optics 
and compare them with the Lorenz - Mie theory to show its applicability. 

The scattering diagrams of an infinite cylinder calculated by the geometrical optics 
described in the above section and by Lorenz - Mie theory for two different sizes are 
shown in Fig. 7.4. The incident wavelength is 0.6328 µm and the refractive index of the 
particle is 1.33. It is clear that when the size of the particle is much greater than the 
wavelength (a = 50 µm in Fig. 7.4(a)) the agreement between GO and the LMT is very 
satisfactory in almost all directions except in vicinity of rainbow angles. From Fig. 7.4(b) 
(a = 10 µm) we can see that the GO can predict correctly the scattering for particle of size 
about 10 times the wavelength. 

  

(a) a = 50 µm                                                      (b) a = 10 µm 

Fig. 7.4. Comparison of the scattering diagrams computed by GO and LMT for an infinite 
circular cylinder of water (m = 1.33) of radius a illuminated by a plan wave of wavelength  

λ = 0.6328 μm. The results of LMT and GO are shifted by 10−2 and 102 respectively  
for clarity [13]. 
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The geometrical optics can easily be extended to the scattering of shaped beam, called 
therefore Extended Geometrical Optics Approximation (EGOA) [7, 8]. When the 
divergence of the incident beam is small, we suppose that the rays in the particle propagate 
rectilinearly. In that case, we need only to take into account the local amplitude and phase 
of each ray at incident point. The incident angle is the angle between the normal of the 
particle surface and the normal of the incident wave front surface which is determined by 
the gradient of the phase function of the incident wave. 

We compare in Fig. 7.5 the scattering diagrams calculated by EGOA and Generalized 
Lorenz - Mie theory (GLMT) for a spherical water droplet. The agreement is excellent in 
all directions and still better than the case of plane wave. This is because the waist radius 
of the incident beam is smaller than the radius of the particle and the intensity of the rays 
which contribute to scattering around the rainbow angles is much smaller than that  
on the axis. 

 

Fig. 7.5. Comparison of the scattering intensities calculated by GLMT and EGOA for a water 
droplet (m = 1.333) of radius a = 25 μm illuminated by a Gaussian beam of waist radius  

w0 = 10 μm and wavelength λ = 0.6328 μm. The particle is located at the center of the beam. 

7.3. Vectorial Complex Ray Model 

We have seen in the previous section that, if the amplitude and the phase shifts of all the 
rays are correctly counted, the classical geometrical optics can predict the scattering of a 
wave by an infinite circular cylinder and a sphere with good precision when the particle 
size is large compared to the wavelength. This is based on the fact that the divergence 
factor and the phase shift due to the focal lines can be calculated analytically. 

In the case where the particle has no such circular or spherical symmetry (referred in the 
following as non - spherical particle), the incident angle changes at each interaction of a 
ray with the particle surface. The divergence factor depends on the local curvature of the 
particle surface, the wave front curvature of the incident wave and the incident angle.  
No analytical expression of divergence factor is possible for arbitrarily shaped particle. 
We have shown also that these two properties cannot be achieved by pure numerical 
technique [14]. 
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In principle, the phase shift due to focal lines is just a count of the passage of focal lines. 
Accordingly it is dependent on the convergence of the waves in and out of the particle. 
Therefore, to count correctly the variation of the amplitude of a ray and its phase shift due 
to the focal lines, we must be able to predict the curvature of the wave front of the wave 
that a ray represents. 

In the Vectorial Complex Ray Model (VCRM) that will be presented in this section, the 
wave front curvature is considered as a new intrinsic property of a ray besides the four 
properties described in Section 7.2. Furthermore, in VCRM all properties of a ray: 
propagation direction, polarization, amplitude and phase will be described in vector, their 
components and complex numbers. 

7.3.1. Snell Law and Fresnel Formulas in Vector Form 

Knowing the fact that ksin ( = i, l or r represent respectively incident, reflected or 
refracted wave) is the tangent component of the wave vector k in the tangent plane to the 
diopter and kr = mki, the Snell laws of reflection and refraction (7.1) and (7.2) can be 
written simply as  

 i l rk k k    , (7.25) 

where the index  stands for the tangent component. The normal components of the 

reflected and refracted waves are respectively ln ink k   and 2 2
rn r ik k k   . 

Similarly, since kcos is the component of the wave vector in the normal direction of 
the diopter surface, the Fresnel formulas (7.3)-(7.6) can therefore be written as function 
of the normal components of wave vectors 
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When the total reflection occurs, the tangent component of the incident wave vector is 
greater than the wave number of the refracted wave kτ > kr. The normal component of the 
refracted wave becomes a pure imaginary number if the two media are both transparent. 

By taking into account the time convention, it can be written as 2 2
rn i rk i k k   . The 
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Fresnel coefficients become complex. Therefore, the phase shifts due to the reflection and 
refraction vary, in general, as function of the incident angle and must be counted correctly 
in the phase calculation of the rays. 

It is worth to note that though Eqs. (7.25)-(7.29) are equivalent to Eqs. (7.1)-(7.6) they are 
much more convenient to the numerical calculation, especially for the scattering of 3D 
irregular particles since only four basic operations are necessary. 

7.3.2. Wave Front Equation 

When a wave arrives on a curved surface, the reflected wave and the refracted wave will 
be converged or diverged according to the curvature of the surface, i.e. the wave front 
curvature will change and the amplitude of the emergent wave in far field will be more or 
less important. To describe this property, we introduce the wave front curvature as a new 
property of a ray. By matching the phase between the incident wave and the reflected or 
refracted wave, we can establish the wave front equation. The derivation of this equation 
is tedious and will be omitted here. We will focus our attention to its physical 
interpretation and applications. 

Consider an arbitrary wave whose wave front curvature at the incident point is described 
by the curvature matrix Q in the base (t1, t2) (Fig. 7.6)1. The curvature of the dioptric 
surface  is given by the curvature matrix C in its base (s1, s2). The curvature matrix of the 
wave after refraction or reflection 'Q  is given by the wave front equation [9] 

   ' ' 'T T
r r iC = k Q k Q      k k n , (7.30) 

where the letters with prime represent the quantities after refraction or reflection, the 
superscript T the transpose of the matrix,  the projection matrix between the unitary 
vectors of the coordinates systems on the planes tangent to the wave front (t1, t2) and the 
dioptric surface (s1, s2) 

 
1 1 1 2

2 1 2 2

  
   

t s t s

t s t s
. (7.31) 

In the case of the plane wave scattering by an ellipsoid or when the axis of an axis - 
symmetric beam passes by the symmetric axis of the ellipsoid, the rays in the plane defined 

                                                      

1 When (t1, t2) are the principal directions of the wave front, the matrix Q is diagonal and may be written as

!

2

1 / 0
0 1 /
RQ R

   
 

, where R1 and R2 are the principal curvature radii of the wave front. Similar notation is 

applied to the dioptric surface. For example, the cuvature matrix C of a sphere of radius a is  1 / 0 ,0 1 /
aC a

and that of a infinite cylinder is  1 / 0
0 0

aC  . 
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by the beam axis and the ellipsoid axis remain always in this plane for any orders. This is 
a special case but very interesting because it simplifies considerably the problem. It 
permits a good understanding of the essential concepts of VCRM and reveals certain 
physical phenomena. 

 

Fig. 7.6. Schema of the wave fronts and the dioptric surface. 

Without loss of generality, we suppose that s2 and t2 are in the incident plane, that means 
s1ꞏt1 = 1 and s2ꞏt2 = cosi. Similar relations can be found for the refracted wave. The wave 
front equation (7.30) is simplified to two scalar equations. The relation between the 
curvature radii in the plane perpendicular to the incident plane is given by [9, 10]: 

 
1 1 1

i rn inr

r i

k k kk

R R 


  , (7.32) 

and the relation of the curvature radii in the incident plane reads as: 
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k R R 


  , (7.33) 

where R stands for the curvature radius of the wave front and  that of the diopter. The 
index 1 and 2 indicate respectively the values in the plane perpendicular or parallel to the 
symmetric plane. It is important to note that the wave front curvature in the direction 
perpendicular to the scattering plane evolves also at each interaction with particle surface. 
This is different from the pure two dimension problem as an infinite cylinder of circular, 
elliptical or any other section shape. 

7.3.3. Amplitude and Phase of a Ray 

The amplitude of a ray may change during the propagation due to the convergence and 
divergence. In the case of light scattering of a plane wave by an infinite circular cylinder 
or by a sphere, the divergence factor has been introduced to describe the variation of the 
intensity (or amplitude) of the ray. A phase shift of focal line has also been calculated 
according to the suggestion of van de Hulst [1]. In the aforementioned cases, both the 
divergence factor and the total phase shift due to the focal lines are given in analytical 
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expressions. In the framework of VCRM for non spherical particle, these two properties 
are to be evaluated step by step according to the wave front curvature. 

7.3.3.1. Amplitude 

When a wave propagates from one point to another, its amplitude, therefore the intensity 
evolves according to the divergence of the wave and the distance between the two points. 
The relation of the intensities between points A and B along a ray can be deduced from 
the energy balance as shown in Fig. 7.7. 

 

Fig. 7.7. Variation of pencil cross section and phase shift due to focal line. 

The two focal lines are F1 and F2. We note the two principal radii of the curvature at A by 
'
1R  and '

2R , and those at B are R1 and R2, then the surface a′b′c′d′ at A is ' '
1 1 2 2( )S A R R   

and the surface abcd at B is 1 1 2 2( )S B R R  . The convergent or divergent characteristic 
of the wave can be noted by the sign of the curvature radii. In this chapter we adopt the 
convention that the curvature is positive if the focal line is after the considered point. 
Therefore, '

2R  in Fig. 7.7 is positive while '
1R , R1 and R2 are all negative. The sign of the 

curvature radii permits to count the phase of focal line that will be discussed later. For 
what concerns the intensity, only their absolute values matter. According to the 
conversation of energy, the energy flux passing through the surface S(A) is equal to that 
through the surface S(B), i.e. ' '

1 1 2 2 1 1 2 2( )[ ] ( )[ ]I A R R I B R R    . We deduce therefore 
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I B I A
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 .  (7.34) 

In the light scattering by a particle, the intensity of the reflected wave at the first reflection 
is the product of the intensity of the incident wave on the particle surface I0 and the 

intensity reflection ratio 
2

,0Xr . If we note the two radii of the reflected wave front by 11
eR  

and 21
eR , the scattered intensity at distance r is then  

 
2 11 21

0 ,0
11 21

( )
( )( )

e e

X e e

R R
I r I r

r R r R


 
,  (7.35) 
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since the curvature radii of the reflected wave at distance r are 11( )er R and 21( )er R . 

Similarly, the intensity of the scattered light of order p = 1 is 

 
' '

2 11 21 12 22
0 ,0 ,1

11 21 12 22

( )
( )( )

e e

X X e e

R R R R
I r I t t

R R r R r R
 

 
 (7.36) 

where the factors ,0Xt  and ,1Xt  are respectively the Fresnel transmission coefficient for p 

= 0 and 1. The term 
' '
11 21

11 21

R R

R R
 is the ratio of the intensities at two successive points. 

In general, if we note the two curvature radii of the incident wave front at jth interaction 
point by R1j and R2j (j = 1, 2, …, q), those of the reflected or refracted wave by '

1 jR  and 
'
2 jR , and the two curvature radii of the emergent wave by 1

e
jR  and 2

e
jR , then the intensity 

of the emergent ray after q interactions with the diopter is given by 

 
2

0 ,( ) 'X pI r I D ,  (7.37) 

where p = q − 1 and the divergence factor D is defined by 
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The factor ,X p  is due to the reflection and refraction and given by 
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.  (7.39) 

It is worth to note that ,0Xr  is the Fresnel reflection coefficient on the surface outside of 

the particle while ,X ir  with i ≥ 1 is the coefficient of the internal reflection. In the special 

case of light scattering of plane wave by an infinite circular cylinder or a spherical particle, 
the reflection coefficient is constant for all orders of rays. Eq. (7.39) is therefore reduced 
to Eq. (7.11). 

The definition of the divergence factor (7.38) includes directly the size of the particle and 
is consistent to the divergence factor of the infinite circular cylinder and the sphere defined 
in Section 7.2. It includes already the prefactor a/r for the circular cylinder (see Eq. (7.18)) 
and a2/r2 for the sphere (see Eq. (7.23)). The detailed derivation of the divergence factor 
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of classical geometrical optics for the scattering of an infinite circular cylinder and a 
sphere from Eq. (7.38) will be given in the next subsection. 

It is worth to point out that in light scattering theories, we talk often about the scattering 
diagram described by a function  ,F   , such that (see Section 2.1 in [1]) 

 0 2 2

( , )
) ( ,

F
I I

k r

    ,  (7.40) 

which is independent of r in far filed. In Lorenz - Mie theory for sphere, ( , )F    is equal 

to   2

1 ,S    for perpendicular polarization and   2

2 ,S    for parallel polarization.  

In VCRM, if we are interested only the scattering in far field, the term 1 2( )( )e e
q qr R r R   

is eliminated in the same way. The amplitude of scattered wave of order p is then 
calculated by 

 0 , "p X pA A k D .  (7.41) 

Where the new divergence factor is defined by 
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In the case of 2D, i.e. scattering by an infinite cylinder (circular, or elliptical or of any 
section shape), Eq. (7.41) is reduced to 

 
' '

'1 2
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2 32p X p q

R Rk
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R R
A

     ,  (7.43) 

since the convergence occurs only in one direction. The factor /2 under the square root 
is necessary for the results to be consistent with LMT (see Eq. (8.40) in [15]). 

7.3.3.2. Phase 

The phase of rays plays a critical rule in counting the wave effect to predict the fine 
structure of the light scattering diagrams, such as the supernumerary bows, the fringes 
near the critical angle or the interference structure near different kinds of caustics. The 
phase  of a ray in VCRM is counted in four parts: 

The first is the phase due to optical path ΦP which is computed directly according to the 
optical path, usually relative to a reference ray which arrives at the particle center in the 
same direction as the incident ray and goes out in the same direction as the emergent ray. 
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Let 
ir  and îk  be respectively the position vector of ith interaction point of the ray with 

particle surface and the normalized wave vector of the emergent ray from that point, the 
phase due to the optical path of a ray after q interactions with the particle is given by 

 
1

0 0 1 1
1

ˆ ˆ ˆ( ) ( )
q

P q q p i i i
i

k k





        k r k r k r r ,  (7.44) 

where 0̂k  is the normalized wave vector of the incident ray. In the case of scattering of 

the plane wave by an infinite circular cylinder or a sphere, 0 1
ˆ ˆ cosq q ia    k r k r . The 

equation (7.23) of the phase due to the optical path of geometrical optics is recovered. 

The second concerns the phase due to the reflection ΦR which is calculated directly 
according to the Fresnel coefficient as described in the previous section. If no total 
reflection occurs, only a constant phase π is added to the perpendicular component for any 
incident angle and to the parallel component if the incident angle is larger than the 
Brewster angle. When the total reflection occurs, the phase shifts depend on the incident 
angle and the phase shifts are to be calculated and added to both polarizations. This is 
responsible of the effects of the tunneling (Goos Hänchen’s shift) [16]. 

As for the phase due to the focal line, it is easy to be calculated in VCRM, because we 
need only to count the number nf of sign changes of the wave front curvature radii between 
successive interactions of ray with the particle surface. And the total phase shift is  
given by 

 
2fF n


  .  (7.45) 

Finally, if the incident wave is a shaped beam, the phase of the incident wave i  is also 

to be counted.  

In conclusion, the total phase of a ray in VCRM is summation of four kinds of phase 
shifts: 

  P R F i     .  (7.46) 

The phase due to optical path is independent of polarization and divergence of the wave, 
while the computation of the phases of reflection and focal lines is delicate, especially for 
problems without symmetry (or simply called 3D scattering) since both depend on the 
polarization of the wave. 

7.3.4. Simple Applications of the Wave Front Equation 

We will apply the wave front equation obtained in the Section 7.3.2 in some special cases: 
first in the formation of image by a plane diopter and a spherical diopter, and then in the 
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determination of the divergence factor in the plane wave scattering by an infinite circular 
cylinder and a sphere. These examples show two aspects of applications of the wave front 
equation. They help also to understand different aspects of the equations. 

7.3.4.1. Image Formation by a Plane Diopter 

Consider a plane diopter which separates two media 1 and 2 of refractive indices equal 
respectively to m1 and m2 (Fig. 7.8). A point object A is in the medium 1 distant OA from 
the refraction point O. The curvature radius of the diopter being infinity, the distance of 
the image A′ from the refraction point, according to Eq. (7.33), is given by 

 
22

12 coscos
 

'
ir mm

OA OA


 .  (7.47) 

 

Fig. 7.8. Image formation by a plane diopter. 

We note that O A  and 'O A  have the same sign. This implies that the object and its image 
are in the same side of the diopter. Suppose that the coordinates of the object point A are 
(x, y). We can obtain the coordinates of the image point B according to Eq. (7.42)  
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    (7.48) 

Therefore, both the lateral and longitudinal distances between the image and the object  
x′ − x and y′ − y depend on the incident angle θi. When the incident angle θi is small, the 

common conjugation relation of a plane diopter 1 2 
'

m m

OA OA
  is recovered. And only in this 

case the lateral shift x′ − x tends to 0, i.e. x′ ≈ x. 
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7.3.4.2. Image Formation by a Spherical Diopter 

Consider a spherical diopter of radius a and center C separating two media of refractive 
indices m1 and m2 (Fig. 7.9). A point source A is placed on an axis passing by C. 

 

Fig. 7.9. Image formation by a spherical diopter. 

In the paraxial case, i.e. for small θi, the commonly used conjugation relation 

 12 2 1 
'

imm m m

SA SA SO


  ,  (7.49) 

is found directly by either of Eq. (7.32) or Eq. (7.33). However, in general case, the two 
curvature radii of refracted wave are different. The image distance given by the wave front 
equation for the curvature radius in the incident plane (7.33) is 
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which indicates that the image is a focal line perpendicular to the incident plane at 
'
2A . 

Yet, the image distance given by the second wave front equation is  

 2 12 1

'
1

cos cosr im mm m

aPAPA

 
  , (7.51) 

which means that the image is a focal line in the incident plane at 
'
1A . Consequently, the 

image formed by rays off - axis is deformed. This is the source of aberration. In fact, the 
wave front equation can be applied to any curved diopter, so it is a powerful tool to study 
the aberration of any curved surfaces. See Ref. [16] for detailed discussion on the 
aberration of imaging formation. 
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7.3.4.3. Divergence Factor of a Circular Cylinder 

Consider an infinite circular cylinder of radius a illuminated perpendicularly by a plane 
wave. One of the principal directions of the surface of the cylinder is along the axis and 
the other is tangent to the surface and perpendicular the axis. The corresponding curvature 
radii are respectively ∞ and a. The two curvature radii of the plane wave are both infinite. 

For the reflection, the normal component of the reflected wave vector is opposite to that 
of the incident wave krn = −kin or cos θr = −cosθi. From Eq. (7.33) it is ready to find the 
curvature radius in the incident plane of the reflected wave 

 1

cos
 .

2
i

l

a
R


    (7.52) 

The negative sign signifies that the curvature center is on the other side of the emergent 
wave. The other curvature radius is ∞. 

For the refraction, the curvature radius of the refracted wave in the incident plane Rr1 is 
found directly from Eq. (7.33) 
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If the refractive index of the cylinder m > 1, the curvature radii are positive, i. e. the center 
of the refracted wave is in the same side of the cylinder axis. In the contrary, if m < 1 

1rR  

is negative, the wave center is in the opposite side of the cylinder axis. 

From the curvature radii given above, we can deduce the divergence factor of a cylinder. 
For the reflection, the divergence factor is 
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and that of the refraction is 
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  (7.55) 

Naturally, in the far field the divergence factors given by geometrical optics are recovered 
as it should be. 

7.3.4.4. Divergence Factor of a Sphere 

Similar to the infinite cylinder, we can also demonstrate that the divergence factor given 
by GO can be found as a special case in VCRM. For example, the two principal curvature 
radii of the reflected wave can be obtained by the wave front equations (7.32) and (7.33) 
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The convergence factor for reflection is therefore (r →	) 
1

4
D  . 

We can also demonstrate that the divergence factor of a sphere given by GO for high order 
rays can be found from the formulism of VCRM. Though there is no difficulty in principle, 
the calculation is somewhat tedious and we will omit it here.  

7.4. Applications of VCRM in Light Scattering 

As a short review, we will give a very brief description of some remarkable results to 
show the power of VCRM. The detailed information may be found in the references 
therein. 

7.4.1. Revisit of Airy Theory in Term of VCRM 

We will apply VCRM to the scattering of a spherical particle. We are interested especially 
in the scattered intensity around the rainbow angles and compare the results of VCRM to 
the Airy theory since the latter is largely used in the particle granulometry. 

We show first in Fig. 7.10 the scattering diagrams calculated with three different methods 
[17]. It is clear that the difference of the peak positions and the intensity maxima of 
supernumerary bows predicted by the Airy theory and the rigorous Debye theory [4] 
increases rapidly as function of the distance from the main peak of rainbow, especially for 
the second rainbow. Whereas the agreement between the results of VCRM and the Debye 
theory is very satisfactory except in the neighborhood of geometrical rainbow angle since 
the diffraction effect must be introduced in VCRM to remedy this flaw. The reason why 
the Airy theory differs from the rigorous theory is due to two approximations in that 
theory: 1). the cubic phase function is deduced from the relation of deviation angle in the 
vicinity of rainbow angle, but in the Airy integration, this variable is extended to infinity, 
and 2) the amplitude of the rays near the rainbow angle is assumed to be constant but this 
is certainly not true because the divergence factor tends to infinity at geometrical rainbow 
angle. In VCRM, the phase and the amplitude of each ray are calculated rigorously in the 
framework of ray model. The results are naturally better that that of Airy theory. 

Furthermore, it worth to point out that in VCRM the same procedure can be applied 
directly to calculate the intensity of the supernumerary bows of a non - spherical particle. 
Examples will be given in the last section. 
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Fig. 7.10. Comparison of the scattered intensity calculated by Debye theory, Airy theory  
and VCRM for a spherical particle of water (m = 1.333) of radius a = 50 μm for the first order 

(left figure p = 2) and the second order (right figure p = 3) of rainbow. 

7.4.2. Scattering by an Elliptical Cylinder 

The scattering of a plane wave by an infinite elliptical cylinder at normal incidence is the 
simplest case of scattering by non - spherical particle since the convergence and 
divergence occur in one plane. Only one scalar wave front equation (7.33) is necessary. 
As an example, we show in Fig. 7.11 the scattering diagrams of an elliptical cylinder of 
semi - axis a = 50 µm along the incident direction and the other semi axis varies from  
25 µm to 50 µm. The refractive index of the cylinder is 1.33 and the incident wavelength 
is  = 0.6328 µm. 

 

Fig. 7.11. Scattering diagrams of an elliptical cylinder illuminated by a plane wave for the 
different aspect ratios. The perpendicular polarization is chosen. 



  Advances in Optics: Reviews. Book Series, Vol. 1 

 226

We find that when the aspect ratio a/b increases from 1 to 1.25, the first order rainbow 
goes to larger angle, the second order rainbow to the smaller angle and the Alexander 
region expands. When the aspect ratio is too big (a/b = 2.0 in the figure), the positions of 
the first rainbow (at 119.8) and the second order rainbow (at 171.2) are reversed. 

VCRM is very easily to be extended to the scattering of a shaped beam. Fig. 7.12 shows 
the scattering diagrams of an elliptical cylinder at illuminated with a two dimensional 
Gaussian beam of different waist radius.  

 

Fig. 7.12. Scattered diagrams of an elliptical cylinder of major radius a = 50 μm and minor radius 
b = 40 μm illuminated by plane wave and a two dimensional Gaussian beam of three different 
waist radius (w0 = 100, 25, 15 μm). The incident beam is polarized along z direction and makes 
an angle θ0 = 20◦ with x axis. The center of the beam is located on the axis of the cylinder [13]. 

The two semi - axes of the elliptical cylinder are respectively a = 50 μm and b = 40 μm 
and the incident wave is the plane wave or a two dimensional Gaussian beam of waist 
radius w0 = 100 μm, 25 μm or 15 μm. The incident wave propagates in the direction x 
perpendicular to the axis of the cylinder z but makes an angle of 20° with the major axis 
of the elliptical section. We remark that the profile of the scattering diagrams are very 
different from those of the circular cylinder. The scattering diagrams are no longer 
symmetric, so they must be given in all directions (0 to 360°). The rainbow angles and the 
Alexander dark regions in the two sides of the scattering diagram (0◦ to 180◦ and 180◦ to 
360◦) are not symmetric neither. When a cylinder is illuminated by a two dimensional 
Gaussian beam of waist radius relatively small, the incident beam intensity at the impact 
position for rainbow is weak. For example, in the case w0 = 15 μm, the rainbow 
phenomena are not visible in two sides relative to the incident direction (20 to 200◦ and 
200◦ to 20◦). If w0 = 25 μm the rainbow is much visible in the side of scattering angle 
smaller than 200◦ than in the other side. 
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7.4.3. Scattering of the Plane Wave by an Ellipsoidal Particle 

An ellipsoidal particle is a simple but very interesting model of non spherical particle [18, 
19]. By changing the three semi - axes and incident angle we can investigate the influence 
of the curvature of the particle surface in different direction. To illustrate the essential 
characteristics of the scattering we will limit ourselves to the scattering of a plane wave 
in a symmetric plane of the particle. 

All the calculations presented in this section have been done by the software VCRMEll2D 
which can be download from our website [20]. A FORTRAN version is also available by 
requiring the authors. The results of VCRM and these codes have been validated by 
comparison with a rigorous numerical method [21, 22]. 

7.4.4. Software VCRMEll2D 

The software VCRMEll2D is composed of two modules, one for ray tracing and the other 
for the calculation of scattering diagram. 

In the module of “ray  tracing”, apart from the properties of the particle, one can 
choose to illuminate whole or a portion of the particle with bundle of rays at a given angle. 
An example is shown in Fig. 7.13(a). This function permits to visualize the divergence 
and convergence of the wave in and out of the particle. 

The module of “Scattering diagram” (Fig. 7.13(b)) permits to calculate the intensity of 
emergent rays for each order and the total scattering intensity. The diffraction in the 
forward direction can also be considered. Therefore, the interference is taken into account 
properly. The data of the scattering diagrams of each order and the total field are saved 
automatically in separated files. One can also choose to save all the properties of all the 
rays at each intersection point, including the coordinates of the point, the wave vectors, 
the Fresnel coefficients, the curvature radii of the diopter and the curvatures radii of the 
wave fronts of incident, reflected and refracted waves.  

7.4.5. Hyperbolic Umbilic Foci of an Oblate Particle and Experimental Validation 

The hyperbolic umbilic foci or the hyperbolic umbilic diffraction catastrophe of an oblate 
particle is a very interesting phenomenon in the light scattering and attracted attention of 
many researchers. It is, in fact, a deformation of rainbow in an oblate particle. Nye [23] 
and Marston et al [24] have given explanation to their formation of the skeleton in term 
of geometrical optics. Fig. 7.14 shows the photographs of rainbow region scattering 
patterns and the explanation of Marston. But the geometrical optics does not permit to 
predict the fine structure of the fringes in the scattering patterns. 

To investigate these phenomena in the framework of VCRM and validate our model, an 
experiment has been realized [25, 26]. A droplet of Di - Ethyl - Hexyl - Sebacat (DEHS) 
is levated using acoustic pressure. The red curves in Fig. 7.15 show the measured 
scattering intensities around the first rainbow angles. The blue curves presents the 
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scattering diagrams calculated with VCRRMEll2D. It is clear that the VCRM predicts 
very well the fine structure in the rainbow region of an oblate. 

 

(a) Ray tracing in a spheroidal particle. 

 
(b) Calculation of the intensity of each order and the total scattering diagram. 

Fig. 7.13. Illustration of the software VCRMEll2D. 
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Fig. 7.14. Photographs of rainbow region scattering patterns (top) and explanation  
of Marston [24]. 

 

Fig. 7.15. Comparison of VCRM and experimental normalized equatorial scattering diagrams  
for the acoustically levated droplets of Di - Ethyl - Hexyl - Sebacat [25]. 

7.4.6. Dependence of Two Rainbow Intensity Ratio on the Aspect Ratio  
of a Prolate Particle  

It is known that the intensity of the rainbow of a spherical particle decreases rapidly with 
the increasing of the order. The intensity of the second rainbow is about one magnitude 
weaker than the first rainbow. However, for a prolate particle, though the rainbow angles 
remain the same as a spherical particle of radius equal to the minor axis, the ratio between 
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the rainbow intensities of different orders varies as function of its aspect ratio. This is 
because the convergence of the wave in the direction along the major axis. As examples, 
we show in Fig. 7.16 the intensity diagram near the first and the second rainbows 
calculated by VCRMEll2D for a sphere and a prolate particle of two aspect ratios. The 
intensity ratio between the second rainbow and the first rainbow increases as function of 
the aspect ratio c/a. This property is very interesting to the characterization of non - 
spherical particle since it can be used to deduce the deformation of the particle [27]. 

 

Fig. 7.16. Scattering intensities near the first and the second rainbows of a sphere  
and a prolate water droplet. 

7.5. Conclusions 

We have developed since a decade a novel model, called Vectorial Complex Ray Model 
(VCRM), to deal with the scattering of large non - spherical particle. The key originality 
of VCRM relies on the introduction of a new intrinsic property to describe the rays, i.e. 
the wave front curvature. This property, as well as four properties in the classical ray 
model (direction, amplitude, phase and polarization) evolves at each interaction of a ray 
with the particle surface and permits to evaluate precisely the amplitude and the phase of 
each ray so that to predict the scattering field with very good precision. 

To ease the access of the new model, we begin with the simple cases of plane wave 
scattering by an infinite circular cylinder and a sphere. The essential concepts and the 
fundamental laws of VCRM are then presented along with simple applications to help the 
understanding.  

Some remarkable results have been exampled to illustrate the power of VCRM. We have 
shown that VCRM predicts much better the positions and the amplitudes of 
supernumerary bows than the Airy theory of rainbow, which has been largely used in the 
measurement of refractive index and size of spherical particle. The infinite elliptical 
cylinder is the simplest non - spherical particle. We have illustrated that its scattering 
diagram are very sensible to the aspect ratio and the waist radius of the incident Gaussian 
beam. 
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Finally, the free software VCRMEll2D has been presented and applied to the scattering 
of a spheroidal particle. It is shown that VCRM predicts very well the fine structure in the 
rainbow (called also the hyperbolic umbilic diffraction catastrophe or hyperbolic umbilic 
foci) of an oblate particle. The intensity ratio between different rainbows is sensible to the 
aspect ratio of a prolate particle. VCRM can quantify this ratio and therefore be applied 
to the characterization of the deformation of droplets. 
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