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Abstract: We report the first experimental validation of the Vectorial 
Complex Ray Model (VCRM) using the scattering patterns of large oblate 
droplets trapped in an acoustic field. The two principal radii and refractive 
index of the droplets are retrieved with a minimization method that involves 
VCRM predictions and experimental light scattering patterns. The latter are 
recorded in the droplet equatorial plane between the primary rainbow region 
and the associated hyperbolic-umbilic diffraction catastrophe. The results 
demonstrate that the VCRM can predict the fine and coarse stuctures of 
scattering patterns with good precision, opening up perspectives for the 
characterization of large non-spherical particles. 
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1. Introduction 

Recently, the present authors introduced the Vectorial Complex Ray Model (VCRM) to 
predict the light scattering patterns of large and arbitrary shaped particles with a smooth 
surface [1–3]. In VCRM a ray possesses not only four properties: direction, polarization, 
amplitude and phase as in classical ray models [4], but also a new one – wave front curvature 
which is governed by the wave front equation [1]. Furthermore, the direction and the Fresnel 
coefficients are all calculated by the wave vector and its components. So it has three 
advantages. First, it is inherently three-dimensional and easy to be implemented. Second, the 
divergence or convergence of the wave on the particle surface and the phase-shifts due to the 
focal lines can be counted easily. Third, the interference of all rays is taken into account in the 
VCRM to ultimately obtain the fine and coarse structures of the scattering patterns. Numerical 
comparisons with the Lorenz-Mie Theory (LMT) were found to be almost perfect for large 
spheres and cylinders [1, 2], except in the immediate vicinity of classical singularity angles 
(rainbow, critical angle,...) and where the contributions of surface waves become significant 
[5]. For spheroids, a fairly good agreement was found with the rigorous electromagnetic 
models [3]. However, because all current electromagnetic models are still limited to particles 
of moderate size parameters (less than 600), experimental data are needed to further validate 
the VCRM. 

The goal of this paper is to report the first experimental validation of the VCRM when 
analyzing the far-field scattering patterns of oblate droplets trapped in an acoustic field. 
Because current numerical implementation of the VCRM only addresses rays propagating 
within a droplet’s equatorial plane, our analysis is focused on the corresponding scattering 
plane and, more specifically, in the angular region between the first 'fringe' of the primary 
rainbow (fold caustic) and first 'fringe' of the caustic associated to the hyperbolic-umbilic 
diffraction catastrophe (HDUC) [6–10]. In this angular region, hereafter referred to as the 
inter-caustics region, classical geometrical ray-models for oblate droplets [7–13] can only 
predict the skeleton of the caustics, while as it is shown, the VCRM allows for predicting, 
with high computational efficiency and accuracy, the coarse and fine structures of the 
scattering patterns. 

3. Experimental setup 

The whole experiment is built around an ultrasonic levitator operating at 100 kHz (Fig. 1). 
The droplet under study is trapped slightly below the pressure nodes, between the ultrasound 
emitter and reflector. Due to the symmetry of the system, the droplet is assumed to be oblate. 
Its vertical principal radius b, along the gravity direction, is smaller than its horizontal 
principal radii a and c, i.e., c = a with b/a<1. Basically, the higher the amplitude of the 
acoustic field, the lower the droplet aspect ratio b/a [14]. 

The measurement setup is first composed of a Rainbow Diffractometry (RD) system (also 
called a Rainbow interferometer [15] or refractometer [16]). The emitting optics of the RD-
system illuminate the droplet along the z-axis with a large, collimated, perpendicular 
polarized, coherent and continuous laser beam with wavelength λ = 532.130 nm and local 
waist radius w0 = 5.5 mm, with w0/a>>1. The perpendicular polarization, i.e., the incident 
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wave vector k and electrical field E are both in the yz-plane, provides rainbow fringes with 
highest contrast. The high coherence length (50 m) and high laser power (2 W) of the laser 
source, as well as the limited exposure time of the CCD camera (35 µs, see later on), are 
required to obtain both the fine and coarse structures of the scattering (and not only the so-
called “global” structures [11–13]). The detection of the RD-system records the droplet far-
field scattering pattern in the inter-caustics region in the vicinity of the droplet equatorial 
plane (xz-plane in Fig. 1). This detection system is almost identical to the one developed for 
the study of critical scattering [17]. It is composed of a collection optics that image the droplet 
in the plane of an iris diaphragm and an achromatic doublet that performs the Fourier 
transform of the previously spatially filtered signal onto the chip of a high resolution CCD 
camera (4 Mpix, 14 bits). The angular resolution of the RD-system is δθ≈0.02°/pixel for a 
maximum angular field of view of Δθ≈29°. 

A shadowgraph imaging (SI) system is used for the comparison of size measurements. Its 
emission optics backlight the droplet by producing a band-pass, pulsed and collimated beam 
(flash duration of 5 µs). The detection of the SI-system is simply composed of a pass-band 
filter, a double telecentric video lens and a CCD camera identical to, and synchronized with, 
that of the RD-system. The SI-system's micrometer to pixel calibration factor is 0.674 pix/µm. 
Classically, the droplet diameter is obtained from its normalized contrast function and a sub-
pixel interpolation scheme [18]. 

 

Fig. 1. Experimental setup with coordinate system. 

Experiments are performed on a single droplet of Di-Ethyl-Hexyl-Sebacat (DEHS, 
provided by Topas GmbH), whose characteristics are monitored when the amplitude of the 
acoustic field is decreased continuously from 156 dB to 148 dB in 60 seconds (i.e., maximum 
recording time for both optical systems). DEHS is commonly used for fluid-flow 
characterization as a non-soluble (i.e., not sensitive to atmospheric moisture), colorless (the 
imaginary part of refractive index is estimated to be of less than k = 10−6) and non-toxic 
liquid. Simple considerations demonstrate that the droplet temperature increase due to the 
laser heating is of less than 5 10−4°C during the course of an experiment. Due to DEHS’s low 
vapor pressure, we expect the volume of the droplet to be fairly constant during the course of 
the experiment. This is a major the droplet temperature increases difference with experiments 
carried with micron-sized [19] or millimeter-sized water droplets, e.g [13, 15]. For the same 
reason and due to the heating induced by the acoustic trap, the temperature of the DEHS 
droplet is expected to increase during the course of the experiment and, thus, its refractive 
index will decrease. DEHS refractive index variation with temperature was measured to be 
−3.87 10−4/C° for our operating conditions. 
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3. Comparison method and parameter estimation 

On a desktop computer, the VCRM takes only a few hundred milliseconds to calculate the 
whole scattering pattern of large spheroidal droplets (e.g., approximately 2800 in what 
follows). However, because the fine structure of the scattering patterns is extremely sensitive 
to the droplet parameters (principal radii and refractive index) [15], it is necessary to calculate 
millions of scattering diagrams to retrieve these parameters when comparing experimental and 
numerical scattering patterns. To do so, our strategy is to pre-calculate and store the VCRM 
calculations in a four-dimensional look-up table. The latter contains Nθ × Na × Nb × Nm 
elements Si,α,β,µ representing the far-field intensity in the equatorial plane and direction θi, with 
i = 1, 2,..., Νθ, that is scattered by a droplet of horizontal principal radius aα, with α = 1, 2,..., 
Na, vertical principal radius bβ, with β = 1, 2,...,Νb, and real refractive index mµ, with μ = 1, 
2,..., Νm. To retrieve the droplet parameters, a simple unconstrained least-square minimization 
of the function ε is performed: 
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where S'i,α,β,μ is the normalized intensity calculated with the VCRM and Ei
' is the interpolated 

value of the measured signal at θi and after normalization. For given values of aα, bβ and mμ, 
the VCRM and experimental scattered intensities are normalized in the same angular range, 
θv, θv + 1,…, θw, with v≥1 and w≤Νθ: 
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For best performance, the angular range used for the normalization and minimization 
function should be dependent on the droplet's properties, i.e., v≡v(aα, bβ, mμ) and w≡w(aα, bβ, 
mμ), because the angular width of the inter-caustic region depends on these parameters, as 
shown in Fig. 2. However, in the present work, to simplify, the same reduced angular range is 
used for all droplets. For all calculations reported below, we have Νθ = 600, Na = Nb = 251 and 
Nm = 125, corresponding to the droplet’s radii and refractive index increments of 50 nm and 4 
× 10−4, respectively. After a first estimation of the droplet parameters, iterative calculations 
are performed to achieve a resolution of 10 nm and 1 × 10−4. The VCRM calculations are 
limited to the first eight scattering orders (p = 0, 1,..., 7) [1–4]. 

 

Fig. 2. Experimental far-field scattering patterns (color coding: intensity) and shadowgraph 
images (top right corners) of a DEHS droplet. From (a) to (c), the droplet's aspect ratio b/a 
increases and refractive index decreases when the amplitude of the acoustic field is reduced. 

4. Results and discussion 

Typical scattering patterns and shadowgraph images are shown in Fig. 2(a-c) for a droplet 
with an aspect ratio b/a that increases from 0.8938 up to 0.9816. Clearly, the shadowgraph 
images justify our hypothesis that, for our operating conditions, the droplet is oblate. In the 
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far-field scattering patterns, two rather unusual trends emerge when compared to the spherical 
case: the elliptical curvature of the primary rainbow fringe and the complex pattern associated 
to the HUDC [6–8]. As observed earlier [7,8], the latter seems to originate from the backward 
direction (θ = 180°) and move towards the primary rainbow fringe for decreasing aspect 
ratios. From Fig. 2(a), it is obvious that the structure of the HUDC pattern (cusp edge, focus, 
hexagonal lattice structure,...) [6, 9] is indeed more complex than observed in the time-
averaged scattering patterns (e.g., [11–13]). By extracting the equatorial intensity profiles 
from Fig. 2(a-c) and using the minimization method introduced above, with θv = 152.3° and 
θw = 157.3°, we compare the experimental and numerical intensity profiles in Fig. 3(a-d). The 
first conclusion is rather straightforward. Within experimental uncertainties (e.g., CCD dark 
noise and residual non-linearity, calibration errors, optical aberrations,...), the VCRM 
predictions fit the experimental scattering patterns in the inter-caustic region very well. The 
agreement is more qualitative in the immediate vicinity of the aforementioned diffraction 
catastrophes (rainbow and HUDC), as well in the backward scattering region. The reasons for 
this are clear. According to Marston and Trinh [7], as well as Nye’s [8] terminology, the 
current VCRM calculations are expected to be valid only in the 'zero-ray region' (i.e., 
Alexander's dark band, where there is no contribution from p = 2 rays) and the 'two-ray 
region' (i.e., the inter-caustics region, where two p = 2 rays propagating in the droplet 
equatorial plane are responsible for the rainbow phenomena, see Fig. 2(a)). The same holds 
true for the “four-rays” region, where the complex scattering pattern is mainly attributed to 
the contributions of two p = 2 rays propagating in the droplet equatorial plane and two skew p 
= 2 rays propagating above and below the droplet equatorial plane (for more details, see Fig. 5 
in [7]). 

 

Fig. 3. Comparison of VCRM and experimental normalized equatorial scattering diagrams for 
the droplets considered in Fig. 2. 

The evolutions of the principal radii obtained with the SI- and RD-systems during the 
course of the experiment are compared in Fig. 4(a). Note that, for drawing considerations, the 
uncertainty on shadowgraph measurements ( ± 1.5 µm) is shown as dashed lines rather than 
error bars. Here, we clearly experience the predictive power of the VCRM. The average 
differences between the two time series of Fig. 4(a) are only 0.05 µm, −0.09 µm and −0.001 
for a, b and b/a, respectively, and 0.17 µm, 0.35 µm and 0.003 for the corresponding root-
mean-square-differences. It may be surprising that the principal radii of oblate droplets can be 
inferred so accurately in a plane where their cross section is circular. However, this can be 
easily understood by recalling two points. First, in the VCRM, a curvature matrix of the local 
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wave front is associated to each ray so that rays propagating in the equatorial plane do carry 
information on a and b [1]. Second, it has long been known that even the fine structure of the 
scattering diagrams of a sphere and right circular cylinder (with the same radius) exhibit 
differences due to the particle surface curvature in the direction perpendicular to the 
equatorial plane. Figure 4 (b) shows that the droplet refractive index decreases significantly 
during the course of the experiment, while its spherical equivalent diameter remains almost 
constant, RSph = (ba2)1/3≈137.47 ± 0.21 µm. This behavior, which will be detailed in a future 
work, is simply attributed to the heating induced by the acoustic trap and low evaporation rate 
of DEHS. These results justify also a posteriori our implicit assumption that internal refractive 
index gradients are (partly) negligible. This may be understood by the rotation of the droplets 
in the trap, both horizontally and vertically, and that the acoustic field generates vortices in 
the surrounding air [14]. All these effects induce strong and complex internal recirculations 
(easily observable with seeding particles) of the fluid inside the droplet, homogenizing the 
temperature of the droplet. 

 

Fig. 4. (a) Principal radii measured with the RD- and SI-System and (b) corresponding 
evolution of the droplet refractive index during the course of the experiment. 

5. Conclusions and perspectives 

The VRCM predictions fit well the experimental scattering patterns of large oblate droplets 
trapped in an acoustic field. The VCRM accuracy, with its high computational efficiency, has 
permitted the retrieval of the evolution of the two principal radii and refractive index of slow 
evaporating droplets. To further extend the capabilities of this model, particularly in the 
immediate vicinity of caustics, physical optics approximations must be included. Although 
not discussed in this paper, this has already been performed using Heisenberg's principle [20] 
for the forward diffraction of spheroid particles, and an important preliminary step has been 
achieved for the near-critical-angle scattering of spheroid bubbles [21]. A similar and even 
more challenging work has to be performed for notably the diffraction catastrophes [6–11]. 
To do so, it will also be necessary to develop a three-dimensional numerical implementation 
of the VCRM. The experimental results and trends reported in this study are necessary 
ingredients for the validation of these next steps. They also clearly demonstrate that to 
monitor the properties of large droplets, their non-sphericity must be considered. 

Acknowledgments 

This work was partially funded by the French National Research Agency (ANR) under grants 
AMO-COPS (ANR-13-BS09-0008-01, ANR-13-BS09-0008-02), Labex MEC (ANR-11-
LABX-0092) and A*MIDEX (ANR-11-IDEX-0001-0). 

#238061 - $15.00 USD Received 15 Apr 2015; revised 23 May 2015; accepted 26 May 2015; published 5 Jun 2015 
© 2015 OSA 15 Jun 2015 | Vol. 23, No. 12 | DOI:10.1364/OE.23.015768 | OPTICS EXPRESS 15773 




