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A vectorial complex ray model is introduced to describe the scattering of a smooth surface object of arbitrary shape.
In this model, all waves are considered as vectorial complex rays of four parameters: amplitude, phase, direction of
propagation, and polarization. The ray direction and the wave divergence/convergence after each interaction of the
wave with a dioptric surface as well as the phase shifts of each ray are determined by the vector Snell law and the
wavefront equation according to the curvatures of the surfaces. The total scattered field is the superposition of
the complex amplitude of all orders of the rays emergent from the object. Thanks to the simple representation
of the wave, this model is very suitable for the description of the interaction of an arbitrary wave with an object
of smooth surface and complex shape. The application of the model to two-dimensional scattering of a plane wave
by a spheroid particle is presented as a demonstration. © 2011 Optical Society of America
OCIS codes: 080.0080, 290.5850, 260.3160, 080.1753, 290.5825.

Geometrical optics is a very simple and intuitive method
for treating the interaction of an object with light or elec-
tromagnetic waves when a dimension of the object is
much larger than the wavelength [1,2]. One of its main
advantages over other methods is that it can be applied
to objects of complex shape, which are hard or even im-
possible to be dealt with by rigorous theories or most nu-
merical techniques. The variable separation methods
based on the solution of Maxwell equations (or its equiva-
lents) are limited to objects that can be described in a
coordinate system of the same geometry, such as sphere,
spheroid, ellipsoid, or circular or elliptical cylinder. Even
in these “simple” cases, the numerical calculation re-
mains another obstacle. Except for the sphere and the
circular cylinder, the size of the scatterer can hardly ex-
ceed a few tens of wavelengths. Numerical methods such
as T matrix, discrete multipole approximation, etc., can
be applied to nonspherical particles, but the size param-
eter of the scatter is also severely limited [3].
Many researchers have contributed to the improve-

ment of geometrical optics. Some take into account
the forward diffraction or other particular wave effects
(Airy theory for the rainbow [4] and Marston’s model
for the critical scattering [5]). Others combine directly
geometrical optics with the electromagnetic wave meth-
od [6]. However, in these studies interference effects of
all order rays are rarely taken into account. We have
shown that, by taking into account the interferences be-
tween all scattered rays, as well as forward diffraction,
we can predict correctly the scattering diagram in all di-
rections [7,8], although the scattering diagram near the
critical and rainbow angles is still to be improved. But,
as soon as geometrical optics is extended to a three-
dimensional (3D) object of irregular shape, three difficul-
ties are encountered: (1) determination of reflection and
refraction angles; (2) calculation of local divergence fac-
tors for smooth dielectric surfaces; and (3) phase shift
due to focal lines. To overcome these obstacles, we
are developing a so-called vectorial complex rays model

(VCRM) that consists of three points: the rays are dealt
with by vectors; the divergence and the focal line phase
shifts are calculated by differential geometry; and the to-
tal scattered field is the superposition of the contribu-
tions of all complex rays. This model makes it possible
to calculate the divergence factor of a single ray bundle
and is easy to extend to irregularly shaped 3D objects. In
this Letter, we present the general forms of VCRM for an
irregularly shaped 3D object with examples of numerical
results for the scattering of a plane wave by a spheroid at
oblique incidence.

In a VCRM, the wave is considered as bundles of
vectorial complex rays. Each ray, q, is characterized
by four parameters: amplitude, Aqμ, phase, Φq, direction
of propagation, k̂q, and polarization state, μ:

Sqμ ¼ AqμeiΦq k̂q; ð1Þ

where μ ¼ 1; 2 stands for perpendicular and parallel po-
larizations, respectively. The direction of the rays before
and after reflection or refraction are described respec-
tively by the normalized wave vectors k̂q ¼ kq=k and
k̂0q ¼ k0q=k0, and the two wave vectors kq and k0q are re-
lated by the vector Snell law:

ðk0q − kqÞ × n̂ ¼ 0; ð2Þ

where n̂ is the normal of the dioptric surface.
The amplitude of the ray is determined by the Fresnel

coefficient, ϵqμ, and the divergence coefficient, Dq:

Aqμ ¼
ffiffiffiffiffiffi
Dq

q
jϵqμj: ð3Þ

The divergence coefficient, Dq, of an emergent ray after q
time interactions with the dioptric surface is determined
by curvature radii of the wavefronts according to
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where r is the distance between the emergent point to the
observation point, R1j and R2j (j ¼ 1; 2;…; q) are the two
principal radii of curvature of the incident wave, and R0

1j
and R0

2j (j ¼ 1; 2;…; q) are those of the refracted wave. In
fact, 1=ðR1jR2jÞ and 1=ðR0

1jR
0
2jÞ are respectively the Gauss

curvatures of the incident and the refracted wavefronts,
and they can be determined by the curvature matrix of
the corresponding surface [9].
Suppose that an arbitrary wave of curvature matrix Q

impinges on a dioptric surface of curvature matrix C.
Then, based on the procedure proposed by Deschamps
[9], we deduce that the curvature matrix Q0 of the wave
after refraction is given by the wavefront matrix equation

ðk0 − kÞ · n̂C ¼ k0Θ0TQ0Θ0
− kΘTQΘ; ð5Þ

where the letters with primes represent the quantities
after refraction, T the transpose of the matrix, and Θ the
projection matrix between the unitary vectors of the co-
ordinates systems on the planes tangent to the wavefront
and the dioptric surface.
The phase of an emergent ray is composed of four

parts: (1) the phase of the incident wave, Φinc; (2) the
phase due to the optical path, Φpath, which can be com-
puted directly according to the optical trajectory; (3) the
phase due to the focal point or focal line, Φfocal (each
time the sign of the curvature radius, Rij, changes we
add a phase shift, π=2 [1]); and (4) the phase due to
the reflection, Φλ=2 (an additional phase, π, is added
when the Fresnel coefficient is negative). The total phase
of a ray is then

Φ ¼ Φinc þΦpath þΦfocal þ ðΦλ=2Þ: ð6Þ

Knowing the amplitude and the phase of each ray, we
calculate the total scattered field by the superposition
of the complex amplitude of all orders of the rays emer-
gent from the object.
It should be pointed out that the equations given above

[Eqs. (2)–(6)] are valid for both the refraction and the re-
flection, and in the latter case we take k0 · n̂ ¼ −k · n̂.
To validate this model, we have shown theoretically

that in the special case of scattering of a plane wave
by a sphere and an infinite circular cylinder at normal
incidence, the forms of VCRM leads to the classical for-
mulation as given, for example, by [1,4]. Numerical
validation for a spherical bubble in water and a spheroid
will be given later in the Letter.
As a demonstration, we apply the model presented

above to the scattering of a spheroid particle illuminated
by a plane wave. We are interested in the scattering in the
plane defined by the symmetric axis of the particle
and the direction of the incident wave, so this is a two-
dimensional (2D) problem.
Consider a spheroid with the center at the origin of the

coordinate system O − xyz and the symmetric axis along
the z axis illuminated by a plane wave propagating in the
xz plane and making an angle, θi, with the z axis. The
radii of the spheroid in the xy and z directions are a

and c, respectively. The two principal curvature radii
of the spheroid at y ¼ 0 are

ρ1 ¼
c2½1þ ða2=c2 − 1Þz2=c2�3=2

a
; ð7Þ

ρ2 ¼ a½1þ ða2=c2 − 1Þz2=c2�1=2: ð8Þ

Because of the symmetry of the problem, the wavefront
matrix Eq. (5) is simplified to two scalar equations:

k0 cos2 β
R0
1

¼ k cos2 α
R1

þ k0 cos β − k cos α
ρ1

; ð9Þ

k0

R0
2
¼ k

R2
þ k0 cos β − k cos α

ρ2
; ð10Þ

where α and β are respectively the incident and refrac-
tion angles. Note that Eqs. (9) and (10) are also valid
for reflection by taking k0 ¼ −k.

Though it is not within the scope of this Letter to dis-
cuss diffraction effects, the forward diffraction is simply
taken into account by considering the spheroid as an
elliptical disk perpendicular to the incident wave. In
our case, the two equivalent radii of the ellipse are A ¼
ðc2 sin2 θi þ a2 cos2 θiÞ1=2 and B ¼ b. For the moderate
aspect ratio, the amplitude of the forward diffraction
wave in far field is given by [10,11]

Ad ¼ k2Ab
J1ðkAθÞ
kAθ ;

where θ ¼ θs − θi and θs the scattering angle. Notice that
if the aspect ratio is important, a more sophisticated
model must be used for the diffraction (see [12] and
the references therein).

The total field is the contribution of all orders, p, of the
complex rays and the forward diffraction. If the particle
is absorbent, the attenuation should be considered. By
taking into account all these factors, the complex ampli-
tude of a scattered wave in far zone is calculated by

Fig. 1. (Color online) Ray tracing of the first four orders for a
spheroid, a ¼ 2c, of water (m ¼ 1:33) illuminated by a plane
wave at 40°. For clarity only a portion of the rays is presented.
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Aμ ¼
X∞
p¼0

Apμe−iΦpe−mikLp þ Ad; ð11Þ

where mi is the imaginary part of the refractive index
of the particle, Apμ the amplitude of the emergent ray of
order p with polarization state μ, and Lp the path of the
ray in the particle.
Based on the procedure described above, software

with a user-friendly interface has been developed under
CodeGear Delphi, Borland, USA, and is available by re-
quest from the authors. This software makes it possible
to visualize the rays of all orders and to calculate the total
scattered intensity as well as that of each order for a pro-
late or oblate spheroid droplet or bubble. As an example,
Fig. 1 shows the tracing of rays for a spheroid droplet,
a ¼ 2c, of water (m ¼ 1:333). For clarity, only 15 rays
are presented. Rainbows for p ¼ 2 and 3 are clearly ob-
served; they are located respectively at 113° and −23°.
Some rays are totally reflected within the particle. Of
15 incident rays, seven of p ¼ 1 (red) and nine of p ¼
3 (green) exit from the spheroid, and the others are to-
tally reflected.
To validate the calculation of the scattered intensity,

we first compare the results of the code with the Lorenz–
Mie theory (LMT). Figure 2 shows the scattering
diagrams of an air bubble in water illuminated by a ver-
tically polarized plane wave. We find the agreement
between VCRM and LMT to be very good. Nevertheless,
remarkable difference is found around the critical angle
ð83°Þ. To improve this, the wave effect must be taken into
account.
In the case of a spheroid, the results of VCRM have

been compared to that of Lock for the reflection [10]
and the first-order refraction [11] in small angles. The
agreement is found again to be very good, but our model
and software make it possible to predict the scattering
diagrams of any orders and in all directions (−180° to

180°). Figure 3 is an example of such diagram. The scat-
tering diagram (calculated with pmax ¼ 5) is much more
complex than that of a spherical particle. Besides the
rainbows seen in Fig. 1 for p ¼ 2 and p ¼ 3, the rainbows
of p ¼ 4 at −63° and −106° are more remarkable than
those for a sphere.

The VCRM introduced is suitable for describing the
scattering of a smooth surface object of arbitrary shape.
By taking into account the interferences of all order com-
plex rays, the VCRM makes it possible to predict the
scattering diagrams of a nonspherical particle in all direc-
tions. The applications of the model in the 3D scattering
of large ellipsoid bubbles [13] and complex liquid liga-
ments obtained by simulation is under study.

This work was partially supported by the French
National Agency under grant ANR-09-BLAN-0023
“CARMINA.”
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Fig. 2. (Color online) Comparison of scattering diagrams com-
puted by VCRM and LMT for an air bubble in water (m ¼ 0:75)
of radius a ¼ 50 μm illuminated by a plane wave of wavelength
λ ¼ 0:6328 μm. The result of LMT has been offset by a factor of
10−2 for clarity.

Fig. 3. Scattering diagram of a spheroid (a ¼ 2c ¼ 20 μm) of
water, m ¼ 1:333, illuminated by a plane wave of wavelength
λ ¼ 0:6328 μm at 40°.
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