Lecture at Xidian University on Frontiers in modern optics

Scattering of shaped beam by particles and its applications

I. Fundamentals of light scattering by small particles

Kuan Fang REN

CORIA/UMR 6614 CNRS - Université et INSA de Rouen School of physics and optoelectronic Eng., Xidian University

西安电子科技大学现代光学前沿专题

波束散射理论和应用

第一讲:小粒子光散射基础

任宽芳

法国鲁昂大学 — CORIA研究所 西安电子科技大学物理与光电学院

Plan of lecture

> Introduction

Fundamentals

Maxwell equations and wave equations

Scalar and vector wave functions

Solutions of wave equations

Lecture at Xidian University

西安电子科技大学现代光学前沿专题

Introduction

Theoretical models

> Rigorous theories

- Lorenz-Mie Theory
- Generalized Lorenz-Mie theory(GLMT)
- • •

> Numerical methods (mainly for non-spherical object)

- FDTD Finite Difference Time Domain
- MoM Method of Moments
- FEM Finite Element Method
- T-Matrix
- DDA Dipole Discrete Approximation (ADDA and DDSCAT)
- • • •

Theoretical models

> Approximate models

- Rayleigh's theory : any shape, dimension $l \ll \lambda$
- Rayleigh-Gans: |*m* 1| <<1</p>
- Diffraction: $l \sim \lambda$
- Geometrical Optics: *l* >> λ
- Geometrical Theory of Diffraction
- Ray theory of wave (RTW) under development
- • •

Fundamentals - Plane wave

In an isotropic medium:

$$D = \varepsilon E, \quad B = \mu H \quad H = \frac{1}{\mu \omega} k \wedge E$$

E -electric field H -magnetic field ε - permittivity μ - permeability

Fundamentals - Different forms of wave

Fundamentals - Refractive index

Complex refractive index

$$\tilde{m} = m_r - m_i i$$

Examples:

vacuum: $c = 3 \times 10^8 \text{ ms}^{-1}$, $\lambda = 0,6328 \mu \text{m}$ water: $n_{eau} = 1,33$ $v_{eau} = 2,26 \times 10^8 \text{ ms}^{-1}$, $\lambda_{eau} = 0,4758 \mu \text{m}$ glass: $n_{verre} = 1,5$ $v_{verre} = 2,00 \times 10^8 \text{ ms}^{-1}$, $\lambda_{verre} = 0,4219 \mu \text{m}$ n = n' v = v', $\lambda = \lambda'$ n < n' v > v', $\lambda > \lambda'$ n > n' v < v', $\lambda < \lambda'$

Fundamentals - Refractive index

Complex refractive index

Imaginary part - absorption:穿透深度: $d = \frac{1}{m_i k_0} = 0.16 \frac{\lambda}{m_i}$

$$E = E_0 e^{i(\omega t - nk_0 z + \phi)}$$

$$= E_0 e^{i\omega t - im_r k_0 z - m_i k_0 z + i\phi}$$

$$= E_0 e^{-m_i k_0 z} e^{i(\omega t - m_r k_0 z + \phi)}$$
Amplitude à z:

$$E_0(z) = E_0(z = 0) e^{-m_i k_0 z}$$
Penetration depth d:

$$\frac{E_0(z = d)}{E_0(z = 0)} = e^{-1}$$
i.e

$$\frac{I(d)}{I(0)} = \frac{1}{e^2} = 13.5\%$$

$$\Rightarrow d = \frac{1}{m_i k_0} = 0.16 \frac{\lambda}{m_i}$$

 $\lambda = 0.6328 \ \mu m$ $m_i = 0.1, \ d = 1 \ \mu m$ $m_i = 0.0001, \ d = 1 \ mm$

Fundamentals - Energy and momentum

Poynting's vector and Intensity

Energy density (J/m³):
$$u = \frac{1}{2} (\boldsymbol{E} \cdot \boldsymbol{D} + \boldsymbol{B} \cdot \boldsymbol{H})$$

Povnting's vector (W/m²):

$$S = E \times H = \frac{1}{2} \operatorname{Re}(E \times H^*)$$

Complex function

In isotropic medium

Poynting's vector: S = vun

Intensity:
$$I = \|S\| \propto E^2$$

S

Fundamentals - Energy and momentum

Stress tensor, force and torque

Stress tensor: $\vec{T} = \frac{1}{2} \operatorname{Re} \left[\varepsilon \boldsymbol{E} \boldsymbol{E}^* + \mu \boldsymbol{H} \boldsymbol{H}^* + \frac{1}{2} \left(\boldsymbol{E} \cdot \boldsymbol{E}^* + \boldsymbol{H} \cdot \boldsymbol{H}^* \right) \vec{I} \right]$ $\boldsymbol{F} = \boldsymbol{\phi}_{s} d\boldsymbol{S} \langle \vec{T} \rangle$ Radiation force: Torque: $\boldsymbol{M} = - \boldsymbol{\Phi}_{\boldsymbol{\alpha}} d\boldsymbol{S} \cdot \left(\langle \vec{T} \rangle \times \boldsymbol{r} \right)$ Integration over a sphere including the particle: -when $r \rightarrow \infty$, $E_r \rightarrow 0$: $\mathbf{F} = -\frac{1}{4} \int_{0}^{2\pi} \int_{0}^{\pi} \operatorname{Re} \left[\epsilon (|E_{\theta}|^{2} + |E_{\phi}|^{2}) + \mu (|H_{\theta}|^{2} + |H_{\phi}|^{2}) \right] \mathbf{e}_{r} r^{2} \sin \theta d\theta d\phi$ -but $E_{\rm r}$ can never be neglected for torque: $\boldsymbol{M} = -\frac{1}{4} \int_{-\infty}^{2\pi} \int_{-\infty}^{\pi} \operatorname{Re}\left[\left(\epsilon E_r E_{\phi}^* + \mu H_r H_{\phi}^*\right) \boldsymbol{e}_{\theta} - \left(\epsilon E_r E_{\theta}^* + \mu H_r H_{\theta}^*\right) \boldsymbol{e}_{\phi}\right] r^3 \sin\theta d\theta d\phi$

Fundamentals - Scattering matrix

y

Fundamentals - Phase function

Scattering diagram

Incident wave polarized in x direction: $I = F(\theta, \phi = 0) = |S_2|^2$ $I = F(\theta, \phi = 90^\circ) = |S_1|^2$

Particle size parameter:

Transparent particle

$$C_{abs} = 0, \quad C_{ext} = C_{sca}$$
 $Q_{abs} = 0, \quad Q_{ext} = Q_{sca}$

Small particle

$$d \ll \lambda:$$

$$Q_{ext} = \frac{8}{3} \left(\frac{\pi d}{\lambda}\right)^4 \operatorname{Re}\left(\frac{m^2 - 1}{m^2 + 2}\right)$$

Fundamentals — Gaussian beam

Characteristics of a beam

(a). Intensity: decreasing along *z* and *r*.

$$I(r,z) = I_0 \left[\frac{w_0}{w(z)}\right]^2 \exp\left[-\frac{2r^2}{w^2(z)}\right]$$

(b). Beam waist radius $w_0 = w(z=0)$:

$$I(r=w) = \frac{I(r=0)}{e^2}$$

$$w(z) = w_0 \sqrt{1 + \left(\frac{\lambda z}{\pi w_0^2}\right)^2}$$

$$z_R = \frac{\pi w_0^2}{\lambda}$$

(c). Divergence angle

$$\theta = \lim_{z \to \infty} \left[\arctan\left(\frac{w(z)}{z}\right) \right] = \arctan\left(\frac{\lambda}{\pi w_0}\right)$$

(d). Rayleigh distance: $z_R = \pi w_0^2 / \lambda$

$$I(0, z_R) = \frac{I_0}{2}, \qquad w(z_R) = \sqrt{2}w_0$$

Lecture at Xidian University

西安电子科技大学现代光学前沿专题

Maxwell equations & wave equations

1. Maxwell equations in differential form

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$
$$\nabla \times \boldsymbol{H} = \boldsymbol{j} + \frac{\partial \boldsymbol{D}}{\partial t}$$
$$\nabla \cdot \boldsymbol{D} = \rho$$
$$\nabla \cdot \boldsymbol{B} = 0$$

E: electric field *H*: magnetic field *D*: electric displacement *B*: magnetic induction *j*: electric current density *ρ*: electric charge density

2. Constitutive relations

$$D = \epsilon E$$

$$B = \mu H$$

$$\varepsilon: permittivity$$

$$\mu: permeability$$

 $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ are scalars in an isotropic medium, matrix in an anisotropic medium.

Maxwell equations & wave equations

- 3. Wave equations of a harmonic wave in free space:
 - <u>Harmonic wave:</u> $A(r,t) = A(r)e^{i\omega t}$ (A stands for H, D, H or B)
 - Free space: *j*=0, ρ=0

By calculating the curl of the first two Maxwell equations, using the 3rd and 4th equations and the identity:

= 0

$$\nabla \times (\nabla \times A) = \nabla (\nabla \cdot A) - \nabla^2 A$$

We obtain the wave equations

$$\nabla^2 \boldsymbol{E} + k^2 \boldsymbol{E} = 0$$

$$\nabla^2 H + k^2 H$$

To be checked by yourself.

- with $k^2 = \omega^2 \mu \varepsilon$
- *k* is the wave number
- ω is the angular frequency
- $v = \sqrt{\mu \varepsilon}$ is the wave velocity.

Maxwell equations & wave equations

4. Scalar wave equations

- <u>Plane wave:</u> It is evident that the plane wave $E(\mathbf{r},t) = E_0 e^{i(\omega t \pm \mathbf{k} \cdot \mathbf{r})}$ is a solution of the wave equation.
- <u>General cases</u>: we can show that in free space two independent scalar functions are sufficient to describe all EM waves. The two scalar functions can be two components of a vector potential.
- <u>Hertz vectors</u>: We choose often a component of the electric Hertz vector Π_e and a component of the magnetic Hertz vector Π_m as the independent scalar functions and construct the two Hertz vectors:

$$\Pi_{\rm e} = a \Pi_{\rm e}$$
 and $\Pi_{\rm m} = a \Pi_{\rm m}$

They satisfy the same wave equation:

$$(\nabla^2 + k^2)\Pi = 0$$

and the EM fields are given by:

$$E = \nabla \times (\nabla \times \Pi_e) - i\omega\mu\nabla \times \Pi_m$$
$$H = i\omega\varepsilon\nabla \times \Pi_e + \nabla \times (\nabla \times \Pi_m)$$

Maxwell equations & wave equations

5. Vector wave equations

Vector wave equation (A stands for E or H or Π)

$$(\nabla^2 + k^2)A = 0$$

Vector wave functions (Π stands for either Π_e or Π_m):
 We suppose that the scalar function Π satisfies the scalar Helmholtz equation and *a* is a vector constant. Then we compose

$$L = \nabla \Pi$$

$$M = \nabla \times (a\Pi)$$

$$N = \frac{1}{k} \nabla \times M$$
with properties
$$\nabla \times L = 0$$

$$\nabla \cdot M = 0$$

$$\nabla \cdot N = 0$$

$$\nabla \cdot L = \nabla^2 \Pi = -k^2 \Pi$$

• EM fields:

$$E = \sum_{n} (A_{n}N_{n} + B_{n}M_{n})$$

$$H = \frac{k}{i\omega\mu} \sum_{n} (A_{n}M_{n} + B_{n}N_{n})$$
Cf. Bohren p198
Check this writing from expression of *E*.

The divergences of *E* and *H* are null in free space, so no *L*.

1. General description

Our task is now to solve the scalar wave equation

$$(\nabla^2 + k^2)\Pi = 0$$

in different coordinate systems by the variable separation method.

i. Wave functions : $\Pi(x_1, x_2, x_3) = X_1(x_1)X_2(x_2)X_3(x_3)$

ii.Differential wave equations: $D(X_1(x_1)) = \mu$

$$D(\Pi(x_1, x_2, x_3)) = 0$$

$$D(X_{1}(x_{1})) = \mu$$

$$D(X_{2}(x_{2})) = \nu$$

$$D(X_{3}(x_{3})) = f(\mu, \nu)$$

iii.Solutions:

- 2. Solution in the cylindrical coordinate system
 - Differential equations in the spherical coordinate system

$$\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\Pi}{\partial\rho}\right) + \frac{1}{\rho^2}\frac{\partial^2\Pi}{\partial\phi^2} + \frac{\partial^2\Pi}{\partial z^2} + k^2\Pi = 0$$

Separation of the variables. We suppose:

$$\Pi(\rho,\phi,z) = R(\rho)\Phi(\phi)Z(z)$$

0

and obtain:

$$\frac{d^2Z}{dz^2} + h^2Z = 0$$

 $\frac{d^2\Phi}{d\phi^2} + \nu^2\Phi = 0$

Harmonic oscillator differential equations.

$$\frac{d^2R}{d\rho^2} + \frac{1}{\rho}\frac{d}{d\rho} + \left(\mu^2 - \frac{\nu^2}{\rho^2}\right)R = 0$$
 Bessel differential eq.

with
$$h^2 + \mu^2 = k^2$$

- General solutions of these three differential equations are respectively
 - Exponential function: $\Phi_m(\phi) = e^{im\phi}$ *m* is the azimuth mode.
 - Cylindrical Bessel function: $R_m(\mu\rho) = Z_m(\mu\rho)$
 - Exponential function: $Z_h(z) = e^{-ihz} h$ is k_z .

So the general solution is given by

$$\Pi_{mh} = Z_m(\mu\rho)e^{i(m\phi-hz)}$$

The Hertz potential for plane wave (*h* const.) is given by

$$\Pi = \sum_{m=-\infty}^{\infty} c_m Z_m(\mu \rho) e^{i(m\phi - hz)}$$

For shaped beam: $\Pi = \sum_{m=-\infty}^{\infty} \int_{h} c_{mh} Z_{m}(\mu \rho) e^{i(m\phi - hz)} dh$

Different fields are expressed with different coefficients and adequate Bessel function.

Lecture at Xidian University

Solution of wave equations

Electromagnetic field

With help of the relation between the Hertz vectors and EM fields:

$$\boldsymbol{E} = \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{\Pi}_{e}) - i\omega\mu\boldsymbol{\nabla} \times \boldsymbol{\Pi}_{m}$$
$$\boldsymbol{H} = i\omega\varepsilon\boldsymbol{\nabla} \times \boldsymbol{\Pi}_{m} + \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{\Pi}_{m})$$

We choose $\Pi = \Pi e_z$ and establish

$E_{ ho}$	=	$\frac{\partial^2 \Pi_e}{\partial \rho \partial z} - \frac{i \omega \mu}{\rho} \frac{\partial \Pi_m}{\partial \phi}$
E_{ϕ}	=	$\frac{1}{\rho}\frac{\partial^2 \Pi_e}{\partial \phi \partial z} + i\omega \mu \frac{\partial \Pi_m}{\partial \rho}$
E_z	=	$\frac{\partial^2 \Pi_e}{\partial z^2} + k^2 \Pi_e$
$H_{ ho}$	=	$\frac{\partial^2 \Pi_m}{\partial \rho \partial z} + \frac{i \omega \epsilon}{\rho} \frac{\partial \Pi_e}{\partial \phi}$
E_{ϕ}	=	$\frac{1}{\rho} \frac{\partial^2 \Pi_m}{\partial \phi \partial z} - i\omega \epsilon \frac{\partial \Pi_e}{\partial \rho}$
E_z	=	$\frac{\partial^2 \Pi_m}{\partial z^2} + k^2 \Pi_m$

by using:

$$\nabla \times (\nabla \times A) = \nabla (\nabla \cdot A) - \nabla^2 A$$

$$\nabla^{2} f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}} + \frac{\partial^{2} f}{\partial z^{2}}$$
$$\nabla \cdot \mathbf{A} = \frac{1}{\rho} \frac{\partial (\rho A_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \boldsymbol{A} = \left[\frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z}\right] \boldsymbol{e}_{\rho} + \left[\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho}\right] \boldsymbol{e}_{\phi} + \frac{1}{\rho} \left[\frac{\partial (\rho A_{\phi})}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \phi}\right] \boldsymbol{e}_{z}$$

Lecture at Xidian University

Solution of wave equations

Vector wave functions:

By introducing the Hertz function in the above equations, the EM fields can be expressed as vector wave function in the form like:

 $\boldsymbol{m} = \nabla \times (\Pi_z \boldsymbol{e}_z)$

$$\boldsymbol{E} = \sum_{m=-\infty}^{\infty} (A_m \boldsymbol{m}_m + B_m \boldsymbol{n}_m)$$

with

$$\boldsymbol{m}_{mh} = \left[\frac{im}{\rho}Z_m(\mu\rho)\boldsymbol{e}_{\rho} - \frac{\partial Z_m(\mu\rho)}{\partial\rho}\boldsymbol{e}_{\phi}\right]e^{i(m\phi-hz)}$$
$$\boldsymbol{n}_{mh} = \frac{1}{k}\left[-ih\frac{\partial Z_m(\mu\rho)}{\partial\rho}\boldsymbol{e}_{\rho} - \frac{hm}{\rho}Z_m(\mu\rho)\boldsymbol{e}_{\phi} + \mu^2 Z_m(\mu\rho)\boldsymbol{e}_z\right]e^{i(m\phi-hz)}$$

In classical Lorentz Mie theory – scattering of a plane wave by a cylindrical particle, for a given incident angle ζ, h=cos ζ is constant. Only the summation on *m* is necessary. But in beam scattering the incident wave and scattered wave must be expanded in h, so a integral on h is necessary.

- 3. Solution in the spherical coordinate system
 - Differential equations in the spherical coordinate system For convenience we note $\Pi = r\varphi$, then the wave equation becomes

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\varphi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\varphi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\varphi}{\partial\phi^2} + k^2\varphi = 0$$

Separation of the variables. We suppose:

$$\varphi(r,\theta,\phi) = R(kr)\Theta(\theta)\Phi(\phi)$$

and obtain: $x = \cos \theta$, v = n(n+1)

$$\frac{d\Phi}{d\phi} + m^2 \Phi = 0$$

$$(1 - x^2) \frac{d^2 P}{dx^2} - 2x \frac{dP}{dx} + \left(v^2 - \frac{m^2}{1 - x^2}\right) P = 0$$

$$\frac{d^2 R}{d(kr)^2} - \frac{2}{kr} \frac{dR}{d(kr)} + \left[1 - \frac{n(n+1)}{(kr)^2}\right] R = 0$$

General solutions of these three differential equations

$$\frac{d\Phi}{d\phi} + m^2 \Phi = 0 \left[(1 - x^2) \frac{d^2 P}{dx^2} - 2x \frac{dP}{dx} + \left(v^2 - \frac{m^2}{1 - x^2} \right) P = 0 \right] \frac{d^2 R}{d(kr)^2} - \frac{2}{kr} \frac{dR}{d(kr)} + \left[1 - \frac{n(n+1)}{(kr)^2} \right] R = 0$$

Are respectively

- Exponential function: $e^{im\phi}$
- (Associated) Legendre function: $P_n^m(\cos\theta)$
- Spherical Bessel function: $z_n(kr)$

So the general solution is given by

$$\varphi_{nm} = z_n(kr)P_n^m(\cos\theta)e^{im\phi}$$

The Hertz potential for any EM wave is given by

Different fields are expressed with different coefficients and adequate Bessel function.

Lecture at Xidian University

Solution of wave equations

Electromagnetic field

With help of the relation between the Hertz vectors and EM fields:

$$\boldsymbol{E} = \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{\Pi}_{e}) - i\omega\mu\boldsymbol{\nabla} \times \boldsymbol{\Pi}_{m}$$
$$\boldsymbol{H} = i\omega\boldsymbol{\varepsilon}\boldsymbol{\nabla} \times \boldsymbol{\Pi}_{m} + \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{\Pi}_{m})$$

We choose $\Pi = \Pi e_r$ and establish

$$E_{r} = \frac{\partial^{2}\Pi_{e}}{\partial r^{2}} + k^{2}\Pi_{e} \qquad \qquad H_{r} = \frac{\partial^{2}\Pi_{m}}{\partial r^{2}} + k^{2}\Pi_{m}$$

$$E_{\theta} = \frac{1}{r}\frac{\partial^{2}\Pi_{e}}{\partial r\partial \theta} - \frac{i\omega\mu}{r\sin\theta}\frac{\partial\Pi_{m}}{\partial \phi} \qquad \qquad H_{\theta} = \frac{i\omega\epsilon}{r\sin\theta}\frac{\partial\Pi_{e}}{\partial \phi} + \frac{1}{r}\frac{\partial^{2}\Pi_{m}}{\partial r\partial \theta}$$

$$E_{\phi} = \frac{1}{r\sin\theta}\frac{\partial^{2}\Pi_{e}}{\partial r\partial \phi} + \frac{i\omega\mu}{r}\frac{\partial\Pi_{m}}{\partial \theta} \qquad \qquad H_{\phi} = -\frac{i\omega\epsilon}{r}\frac{\partial\Pi_{e}}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial^{2}\Pi_{m}}{\partial r\partial \phi}$$

by using

UNIVERSITÉ

$$\nabla u = \frac{\partial u}{\partial r} e_r + \frac{1}{r} \frac{\partial u}{\partial \theta} e_{\theta} + \frac{1}{r \sin \theta} \frac{\partial u}{\partial \phi} e_{\phi} \qquad \nabla \times (\nabla \times A) = \nabla (\nabla \cdot A) - \nabla^2 A$$

$$\nabla \cdot a = \frac{1}{r^2} \frac{\partial (r^2 a_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta a_{\theta})}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial a_{\phi}}{\partial \phi}$$

$$\nabla \times a = \frac{1}{r \sin \theta} \left[\frac{\partial (\sin \theta a_{\phi})}{\partial \theta} - \frac{\partial a_{\theta}}{\partial \phi} \right] e_r + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial a_r}{\partial \phi} - \frac{\partial (ra_{\phi})}{\partial r} \right] e_{\theta} + \frac{1}{r} \left[\frac{\partial (ra_{\theta})}{\partial r} - \frac{\partial a_r}{\partial \theta} \right] e_{\phi}$$

Lecture at Xidian University

Solution of wave equations

Vector wave functions:

By introducing the Hertz function in the above equations, the EM fields can be expressed as vector wave function in the form like:

$$\boldsymbol{E} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (A_{mn} \boldsymbol{m}_{mn} + B_{mn} \boldsymbol{n}_{mn})$$

with

$$\boldsymbol{m}_{mn} = \left[im z_n(kr) \pi_n^{|m|}(\cos \theta) \boldsymbol{e}_{\theta} - z_n(kr) \tau_n^{|m|}(\cos \theta) \boldsymbol{e}_{\phi} \right] \boldsymbol{e}^{im\phi}$$
$$\boldsymbol{n}_{mn} = \frac{1}{kr} \left[\frac{n(n+1)}{kr} \psi_n(kr) P_n^{|m|}(\cos \theta) \boldsymbol{e}_r + \psi_n'(kr) \tau_n^{|m|}(\cos \theta) \boldsymbol{e}_{\theta} + im \psi_n'(kr) \pi_n^{|m|}(\cos \theta) \boldsymbol{e}_{\phi} \right] \boldsymbol{e}^{im\phi}$$

In classical Lorentz Mie theory – scattering of a plane wave by a spherical particle, we have only terms with m=±1, so cosine and sine functions as well as Legendre function are used, and the vector wave functions are noted as m_{oln}, m_{eln}, n_{oln}, n_{eln}. But in beam scattering m_{mn}, n_{mn} must be used for the solutions to be completed.

